当前位置:首页 > 过刊浏览->2025年46卷第12期
金属纳米结构间隙的激光冲击调控研究
Researchon Laser Shock Controlof Gaps in Metal Nanostructures
浏览(14) 下载(0)
- DOI:
- 作者:
- 田元 1,王懋露 1,2,陈 阳 1,裴延波 3
TIAN Yuan1,WANG Maolu1,2,CHEN Yang1,PEI Yanbo3
- 作者单位:
- 1. 哈尔滨工业大学 机电工程学院,黑龙江 哈尔滨 150001; 2. 西北工业大学 凝固技术全国重点实验室,陕西西安 710072; 3. 哈尔滨工业大学 物理学院,黑龙江 哈尔滨 150001
1. School of Mechanical and Electrical Engineering, Harbin Institute of Technology, Harbin 150001,China; 2. State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072,China; 3. School of Physics, Harbin Institute of Technology, Harbin 150001,China
- 关键词:
- 激光冲击;金属纳米结构;超小线间隙;分子动力学;协同变形
laser shock; metal nanostructures; ultrafine wire gap; molecular dynamics; synergistic deformation
- 摘要:
- 金属纳米结构的超小间隙在纳米光电器件中具有重要意义。 本文通过分子动力学模拟与试验研究了激光冲击作用下金属纳米结构与铝膜的协同变形过程,揭示了超小线间隙的形成及调整机制。 模拟结果表明,激光冲击产生的高应变率变形使金属纳米颗粒发生径向膨胀,同时铝膜在冲击波作用下向纳米间隙流动,形成纳米级突起,阻止纳米颗粒 融 合 ,其与 金 纳米 颗 粒 之间 的 挤压 作用 ,提 供 额 外 的约 束 力 ,使 金 属 纳米 结构 的 变 形更 加 均匀 ,形 成 稳 定 超 小线 间 隙。 通过调整激光能量和纳米结构参数,可以精确控制间隙尺寸,为金属纳米结构超小间隙的高精度制备提供了理论依据。Ultrafine gaps in metal nanostructures are highly important in nano optoelectronic devices. The synergistic deformation process of metal nanostructures and aluminium films under laser shock through molecular dynamics simulations and experiments was investigated, revealing the formation and adjustment mechanism of ultrafine wire gaps. The simulation results show that the high strain rate deformation generated by laser shock causes the radial expansion of metal nanoparticles, whereas the aluminium film flows towards the nanoscale gaps under the action of shock waves, forming nanoscale protrusions that prevent the fusion of nanoparticles. The squeezing effect between the aluminium film and the gold nanoparticles provides an additional restraining force, making the deformation of the metal nanostructure more uniform and forming stable ultrafine wire gaps. By adjusting the laser energy and nanostructure parameters, the gap size can be precisely controlled, providing a theoretical basis for the high-precision preparation of ultrafine gaps in metal nanostructures.












