当前位置:首页 > 过刊浏览->2025年46卷第12期
基于同步辐射光源的高温高频原位衍射与 成像疲劳试验机及其应用
High-temperatureand High-frequencyin Situ Diffractionand Imaging FatigueTestingApparatusBased on a SynchrotronRadiation Facilityand its Applications
浏览(15) 下载(0)
- DOI:
- 作者:
- 郑严 1,2,3,4,梅金娜 1,2,朱斌 1,2,李可 5,蔡振 1,2,林贤军 1,2,赵万祥
ZHENG Yan1, 2, 3, 4,MEI Jinna1, 2,ZHU Bin1, 2,LI Ke5,CAI Zhen1, 2,LIN Xianjun1, 2,ZHAO Wanxiang1, 2
- 作者单位:
- 1. 苏州热工研究院有限公司,江苏 苏州 215004;2. 国家核电厂安全及可靠性工程技术研究中心,江苏 苏州 215004; 3.天津大学 化工学院,天津 300350;4. 广西防城港核电有限公司,广西 防城港 538001;5. 中国科学院上海高等研究院 上海同步辐射光源,上海 201204
1. Suzhou Nuclear Power Research Institute Co., Ltd., Suzhou 215004,China; 2. National Engineering Research Center of Nuclear Power Plant Safety & Reliability, Suzhou 215004,China; 3. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; 4. Guangxi Fangchenggang Nuclear Power Co., Ltd., Fangchenggang 538001, China; 5. Research Center for Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204,China
- 关键词:
- 同步辐射;原位疲劳试验机;衍射;成像
synchrotron radiation; in situ fatigue testing apparatus; diffraction; imaging
- 摘要:
- 同步辐射光源的出现为材料内部细微观表征提供了全新手段,为了将同步辐射光源应用于材料的疲劳研究,一些耦合同步辐射光源的疲劳试验机相继问世,但是这些试验机往往局限于加载频率、试样尺寸和成像表征等。 为了解决传统原位疲劳试验机的局限性, 本文开发了一种基于同步辐射光源的高温高频原位衍射与成像疲劳试验机,该疲劳试验机通过采用高频疲劳加载模块和超声疲劳加载模块,可实现 20~1 000 Hz 和(20±0.5) kHz 宽频域疲劳加载,在有限机时内可开展低周、高周和超高周疲劳实验。 试验机具备常温和高温实验能力,高温模式采用高频感应加热和红外实时温度监测,通过比例积分微分(proportional integral derivative, PID)反馈控制动态调节,可实现 400~1 000 ℃高温实验;适配宽范围尺寸疲劳试样,便于纳入尺度效应对材料性能和行为的影响。 基于开发的原位疲劳试验机在上海同步辐射光源(Shanghai synchrotron radiation facility, SSRF)BL16U2 线站开展了系列原位衍射、成像及二者的协同实验,结果表明,该原位疲劳试验机具备实现疲劳试验过程中材料内部缺陷的动态表征、材料内部缺陷和裂纹的无损三维形貌表,以及疲劳过程中衍射与成像的多尺度协同表征能力,可为疲劳过程中材料内部损伤演化行为研究提供良好的科研平台。The advent of synchrotron radiation facilities has provided a new approach for characterizing the internal microstructures of materials. To apply synchrotron radiation facilities to material fatigue research, several fatigue testing apparatuses coupled with synchrotron radiation facilities have been developed. However, these testing apparatuses are often constrained by factors such as loading frequency, specimen size, and imaging characterization. To address the limitations of traditional in situ fatigue testing apparatuses, a high-temperature and high-frequency in situ diffraction and imaging fatigue testing apparatus based on a synchrotron radiation source has been developed. A high-frequency fatigue loading module and an ultrasonic fatigue loading module are employed. Moreover, 20~1 000 Hz and (20 ±0.5) kHz wide-frequency-domain fatigue loading can be achieved, enabling low-cycle, high-cycle, and very-high-cycle fatigue experiments within the limited loading time. The apparatus supports both ambient and elevated-temperature testing. The high-temperature mode employs high-frequency induction heating with real-time infrared temperature monitoring, which is dynamically regulated via proportional-integral-derivative (PID) control to enable experiments within the 400~1 000 ℃ range. A wide range of fatigue specimen dimensions can be accommodated, facilitating the incorporation of the influence of scale effects on material properties and behavior. A series of in situ diffraction, imaging, and collaborative experiments were conducted on the developed in situ fatigue testing apparatus and the BL16U2 beamline at the Shanghai synchrotron radiation facility(SSRF). The results indicate that the in situ fatigue testing apparatus developed in this study enables dynamic characterization of internal defects in materials during the fatigue process, nondestructive 3D morphology characterization of internal defects and cracks, and multidimensional synergistic characterization of diffraction and imaging during fatigue, which can provide an excellent research platform for studying the internal damage evolution behavior of materials during fatigue.












