当前位置:首页 > 过刊浏览->2025年46卷第12期
铝基复合材料弹性模量研究进展
Review of the ElasticModulusEnhancementof AluminiumMatrix Composites
浏览(15) 下载(0)
- DOI:
- 作者:
- 胡静怡,高通,刘相法
HU Jingyi, GAO Tong, LIU Xiangfa
- 作者单位:
- 山东大学 材料液固结构演变与加工教育部重点实验室,山东 济南 250061
Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061,China
- 关键词:
- 铝基复合材料;弹性模量;增强相设计;界面工程;多尺度协同增强
aluminium matrix composites; elastic modulus; reinforcement phase design; interface engineering; multiscale synergistic enhancement
- 摘要:
- 随着高端制造领域对轻质高刚度结构材料需求的持续增长,铝基复合材料因其优异的比强度、导热性和可加工性成为研究焦点。 然而,传统铝合金弹性模量较低(约 70 GPa),难以满足高刚度构件的性能要求。 为此,研究者通过引入高模量增强相、优化界面结构与组织致密性等策略,致力于改善其弹性响应性能。 本文系统综述了近年来铝基复合材料模量提升的研究进展,重点聚焦于增强相设计(陶瓷颗粒、纳米碳材料等)、界面工程(载荷传递机制与残余应力调控)、微观结构调控(粒径、取向、致密度)及制备工艺(粉末冶金、熔体法、增材制造等)的协同作用机理。 特别指出,多尺度杂化增强与结构-功能一体化设计正逐步成为实现模量-强度-韧性协同优化的关键路径。 最后,本文展望了模量定向调控策略在智能构件及极端环境服役等领域的潜在应用前景。With the increasing demand for lightweight and high-stiffness structural materials in advanced manufacturing, aluminium matrix composites (AMCs) have attracted increasing attention because of their high specific strength, excellent thermal conductivity, and good workability. However, the relatively low elastic modulus of conventional aluminium alloys (typically approximately 70 GPa) limits their application in stiffness-critical fields. To overcome this drawback, researchers have explored various strategies to increase the elastic response of AMCs, including the incorporation of high-modulus reinforcements, interface engineering, and structural densification. This review systematically summarizes recent progress in improving the elastic modulus of AMCs, with a focus on the design of reinforcements (such as ceramic particles and carbon nanomaterials), interface control strategies (including load transfer efficiency and residual stress mitigation), microstructural optimization (in terms of particle size, alignment, and densification), and processing routes (such as powder metallurgy, melt processing, and additive manufacturing). Particular attention is given to the emerging role of multiscale synergistic reinforcements and structure-function integrated design, which provide new pathways for achieving simultaneous improvements in modulus, strength, and ductility. Finally, future directions are discussed, emphasizing the potential of modulus-oriented design strategies for next-generation AMCs in intelligent structural fields and extreme service environments.












