当前位置:首页 > 过刊浏览->2025年46卷第9期
热处理对选区激光熔化 Mg-Y-Sm-Zn-Zr 合金显微组织及力学性能的影响
Effect of Heat Treatment on the Microstructureand Mechanical Propertiesof SelectiveLaser Melting Mg-Y-Sm-Zn-Zr Alloys
浏览(9) 下载(0)
- DOI:
- 作者:
- 顾军 1,徐玉棱 1 ,王文礼 2
GU Jun1,XU Yuleng1,WANG Wenli2
- 作者单位:
- 1. 宝玛克(合肥)科技有限公司,安徽 巢湖 238000;2. 西安建筑科技大学冶金工程学院,陕西 西安 710055
1. Baomarc (Hefei) Technology Co., Ltd., Chaohu 238000,China; 2. School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055,China
- 关键词:
- Mg-Y-Sm-Zn-Zr;选区激光熔化;固溶热处理;显微组织;力学性能
Mg-Y-Sm-Zn-Zr; selective laser melting; heat treatment; microstructure; mechanical properties
- 摘要:
- 采用选区激光熔化技术(selective laser melting, SLM)制备了 Mg-3.4Y-3.6Sm-2.6Zn-0.8Zr 稀土镁合金,通过对合金在不同固溶与时效制度下进行热处理,结合扫描电子显微镜(SEM)、X 射线衍射(XRD)及能谱分析(EDS),系统研究了不同热处理对合金显微组织演变、析出相特征及力学性能的影响,获得了最佳热处理工艺参数。 结果表明,SLM 态合金的晶粒尺寸为 3.8 μm,微观组织主要由 α-Mg、共晶相(Mg, Zn)3(Y, Sm)和 Y2O3 组成。 成形件试样的屈服强度、抗压强度和压缩应变分别为 406 MPa、509 MPa 和 16.7%。 经过 500 ℃×12 h 的固溶处理后,晶粒尺寸为 5.52 μm,与 SLM 态合金相比,屈服强度降至 381 MPa,抗压强度提升至 528 MPa。 合金中 α-Mg 的稀土元素含量最高,固溶处理促使稀土元素固溶于 α-Mg 基体,形成弥散分布的富 RE 相,使抗压强度从 509 MPa 提升至 528 MPa,压缩应变保持在 16.4%。AMg-3.4Y-3.6Sm-2.6Zn-0.8Zr rare-earth magnesium alloy was fabricated via selective laser melting (SLM). The effects of various solution treatments and aging regimes on microstructural evolution, precipitate characteristics, and mechanical properties were systematically investigated through heat treatment experiments combined with scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy-dispersive spectroscopy (EDS), with optimal heat treatment parameters identified. The results indicate that the as-SLM alloy has fine equiaxed grains (3.8 μm) consisting of an α-Mg matrix, a eutectic phase (Mg, Zn)3(Y, Sm), and Y2O3 oxides. The compressive yield strength (CYS), ultimate compressive strength (UCS), and strain of the as-built samples reach 406 MPa, 509 MPa, and 16.7%, respectively. Following solution treatment at 500 ℃ for 12 h, coarsening of the grains to 5.52 μmreduces the CYS to 381 MPa while increasing the UCS to 528 MPa. Quantitative EDS analysis reveals the maximum rare-earth (RE) element concentration within α-Mg. Solution treatment facilitates RE dissolution into the matrix and subsequent precipitation of dispersed RE-rich phases, whoseredistribution underpins the enhanced UCS from 509 MPa to 528 MPa, with favourable compressive strain retained at 16.4%.