当前位置:首页 > 过刊浏览->2025年46卷第9期
形变热处理工艺对 Cu-3.06Ti 合金组织与 性能的影响
Effect of Thermomechanical Treatmenton the Microstructure and Mechanical Properties of Cu-3.06 wt.%Ti Alloy
浏览(7) 下载(0)
- DOI:
- 作者:
- 李婧婷 1,郭春文 1,2,王锦程 3,赵红亮 1,2,张书亚 1,2,范宇恒 1,2,董祥雷 1,
LI Jingting1,GUO Chunwen1,2,WANG Jincheng3,ZHAO Hongliang1,2,ZHANG Shuya1,2, FAN Yuheng1,2,DONG Xian
- 作者单位:
- 1. 郑州大学 材料科学与工程学院,河南 郑州 450001;2. 郑州大学 稀有金属特种材料全国重点实验室,河南 郑州 450001; 3. 西北工业大学 凝固技术全国重点实验室,陕西 西安 710072
1. School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001,China; 2. National Key Laboratory of Special Rare Metal Materials, Zhengzhou University, Zhengzhou 450001,China; 3. State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072,China
- 关键词:
- Cu-Ti 合金;热处理工艺;预时效;时效强化;性能
Cu-Ti alloy; heat treatment process; preaging treatment; age hardening; properties
- 摘要:
- Cu-Ti 合金凭借高强度、良好机械加工性能、资源丰富及成本低廉等优势,成为最具潜力替代传统铍青铜的高强弹性导电材料。 但是 Cu-Ti 合金的强度和导电率相互掣肘,常规时效工艺难以实现 Cu-Ti 合金的强导协同优化。 以热锻 Cu-3.06Ti(质量分数,%)合金为研究对象,通过设计 3 种工艺路线,结合显微硬度、拉伸性能、电导率测试及 OM、TEM、XRD 分析,优化 Cu-3.06Ti 合金形变热处理工艺,探究不同工艺条件对 Cu-3.06Ti 合金组织及性能的影响规律。结果表明,常规工艺路线Ⅰ(固溶+冷轧 86.4%+450 ℃时效 40 min)下 Cu-3.06Ti 合金的峰值硬度为 327.9 HV,此时抗拉强度为 1110.7 MPa,导电 率 为 10.55%IACS,但析 出 相 尺 寸 差 异 较 大 。 引入 双 级 时 效 工 艺 后 ,工艺 路 线Ⅱ(固溶 +20%预变 形 + 峰值 预 时 效 + 冷轧 83%+400 ℃ 二级时效)处理后合金的峰值硬度 、抗拉强度和导电率分别可达 367.6 HV、1293.2 MPa 和 12.87%IACS,工艺路线Ⅲ(固溶 +20%预变形+欠峰值预时效+冷轧 83%+450 ℃二级时效)处理后合金的峰值硬度、抗拉强度和导电率分别可达 376 HV、1341.1 MPa 和 9.20%IACS。 研究证实,预时效阶段形成的纳米亚稳相与冷变形引入的高密度位错可以协同作用, 细化终时效过程析出的 β′-Cu4Ti 强化相并使其均匀分布, 从而实现 Cu-Ti合金强度与导电性能的同步提升。Cu-Ti alloys are considered promising alternatives to Cu-Be alloys owing to their high strength, good workability, resource abundance and low cost. However, a trade-off between strength and electrical conductivity remains a major challenge, and conventional aging treatments often fail to achieve a balanced enhancement of both mechanical properties and electrical conductivity. A hot-forged Cu-3.06 wt.% Ti alloy was studied through three designed thermomechanicalprocessing routes. Microhardness, tensile strength, and electrical conductivity were evaluated, along with microstructural characterization via OM, TEM, and XRD, to investigate the effects of various thermomechanical treatment conditions on the microstructure and properties of the Cu-3.06 wt.% Ti alloy. Under conventional processing route I (solution treatment + cold rolling with an 86.4% reduction + aging at 450 ℃ for 40 min), the alloy reaches a peak hardness of 327.9 HV, tensile strength of 1 110.7 MPa, and electrical conductivity of 10.55% IACS, although the precipitate size distribution is inhomogeneous. With the introduction of a two-step aging strategy, significant improvements are observed. Processing route II (solution treatment + 20% predeformation+peak-aged preaging treatment + cold rolling with an 83% reduction + aging at 400 ℃ )results in a peak hardness of 367.6 HV, tensile strength of 1 293.2 MPa, and electrical conductivity of 12.87% IACS. Processing route III (solution treatment + 20% predeformation + undereaged preaging treatment + cold rolling with an 83% reduction + aging at 450 ℃ )further enhances the hardness and tensile strength to 376 HV and 1 341.1 MPa, respectively, although the electrical conductivity slightly decreases to 9.20%IACS. The nanoscale metastable β′-Cu4Ti phase formed during preaging, in combination with the high dislocation density induced by cold deformation, contributed to the refinement and uniform dispersion of precipitates during the final aging process. This synergistic effect effectively enhances both the strength and electrical conductivity, offering a viable pathway for the comprehensive performance optimization of Cu-Ti alloys.