当前位置:首页 > 过刊浏览->2025年46卷第9期
钛基复合材料增强相分布构型对其 力学性能的影响研究
Influenceof the ReinforcementDistributionConfigurationson the Mechanical Propertiesof TitaniumMatrix Composite
浏览(7) 下载(0)
- DOI:
- 作者:
- 黄孝余 1,2,刘川 1,2,董路 1,2,李凯迪 1,2,杨舜 2,3
HUANG Xiaoyu1,2,LIU Chuan1,2,DONG Lu1,2,LI Kaidi1,2,YANG Shun2,3
- 作者单位:
- 1. 重庆三航新材料技术研究院有限公司,重庆 401135;2. 西北工业大学重庆科创中心,重庆 401135;3. 西北工业大学 凝固技术全国重点实验室,陕西 西安 710072
1. Sanhang Advanced Materials Research Institute Co., Ltd., Chongqing 401135,China; 2. Innovation Center NPU Chongqing, Chongqing 401135,China; 3. State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072,China
- 关键词:
- 钛基复合材料;微观组织构型;TiC 颗粒;粉末冶金;强韧化机制
titanium matrix composites; microstructure configurations; TiC particles; powder metallurgy; strengthening and toughening mechanisms
- 摘要:
- 钛基复合材料的微观组织构型设计对其力学性能有重要影响,然而受制于不同构型复合材料的制备方法差异,针对不同微观构型复合材料的对比研究较少,构型的强韧化机理有待进一步明确。 利用不同反应体系的增强相前驱体,采用相同工艺分别制备了增强颗粒呈近均匀分布构型与非均匀分布构型的(TiC+Ti5Si3)/Ti 复合材料,借助 XRD、SEM、EDS 手段对微观组织进行分析,探讨了复合材料构型的演变形成过程。 对复合材料进行了压缩力学性能测试,结果表明,在增强颗粒含量、尺寸相近的情况下,以 Ti3SiC2+Si 为前驱体制备的均匀分布构型复合材料具有强度优势 ,而以 Si+ 石墨为前驱体的非均匀分布构型复合材料具有塑性优势,揭示了均匀构型的强化机制以及非均匀构型的韧化机制,为钛基复合材料增强相的构型设计及性能优化提供一定借鉴。The design of microstructural configurations in titanium-based composites profoundly influences their mechanical properties. Nevertheless, constrained by disparities in fabrication methods for composites with distinct configurations, comparative studies on composites featuring various configurations remain scarce. Moreover, the strengthening and toughening mechanisms underlying different configurations require more in-depth clarification. Different precursor systems were employed to fabricate (TiC+Ti5Si3)/Ti composites with nearly uniform (using Ti3SiC2+Si precursors) and non-uniform (using Si+graphite precursors) reinforcement phase distributions through identical processing. Microstructural analysis via XRD, SEM and EDS reveals the formation mechanisms of these configurations. Compression tests show that the uniformlydistributed composite exhibits greater strength, whereas the non-uniform variant demonstrates better plasticity when these composites have the same content and scale of reinforcements. This work systematically elucidates the strengthening mechanisms in uniform systems and toughening mechanisms in heterogeneous systems, providing insights for mechanical property optimization via spatial control of reinforcements.