当前位置:首页 > 过刊浏览->2025年46卷第3期
粉末冶金铌合金的研究进展
Research Progress on Niobium Alloys Prepared via Powder Metallurgy
浏览(54) 下载(53)
- DOI:
- 作者:
- 崔子振1,李启军1,梅 恩2,李星宇2,陈 刚2
CUI Zizhen1, LI Qijun1, MEI En2, LI Xingyu2, CHEN Gang2
- 作者单位:
- 1. 航天材料及工艺研究所,北京100076;2.北京科技大学新材料技术研究院,北京100083
1. Aerospace Research Institute of Material & Processing Technology,Beijing 100076; 2. Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
- 关键词:
- 粉末冶金铌合金;粉体制备;烧结致密化;增材制造;力学性能
powder metallurgy niobium alloy; powder preparation; sintering densification; additive manufacturing; mechanical property
- 摘要:
- 粉末冶金铌合金因其组织均匀、晶粒细小、力学性能优异,是航空航天、国防军工及核工业等领域不可或缺 的高温结构材料。 本文综述了铌合金粉末制备、成形与烧结、增材制造工艺及其组织性能调控方面的最新进展,重点介 绍了氢化-脱氢、等离子旋转电极雾化、电极感应气雾化、电子束雾化法及近球形粉末改性处理等先进粉体制备技术,分 析了金属注射成形、热等静压、外场辅助烧结和增材制造粉末冶金铌合金的发展现状,对比了不同合金体系及制备工艺 下粉末冶金铌合金的力学性能,指出粉末冶金铌合金未来在低成本粉体高效制备、强韧化新途径、黏结剂辅助3D打印 和高性能复杂构件制备等方面的发展方向。Powder metallurgy niobium alloys, which are characterized by their homogeneous microstructure, fine-grained structure, and superior mechanical properties, serve as critical high-temperature structural materials in the aerospace, defense, and nuclear industries. This paper systematically reviews recent advances in the preparation of niobium alloy powders, forming and sintering densification processes, additive manufacturing techniques, and microstructure-property optimization. Special emphasis is placed on state-of-the-art powder preparation technologies, including the hydrogenation-dehydrogenation process, plasma rotating electrode process, electrode induction gas atomization, electron beam atomization, and near-spherical powder modification techniques. Furthermore, an in-depth analysis of current developments in forming and densification methods such as metal injection molding, hot isostatic pressing, field-assisted sintering technology, and additive manufacturing is provided. By comparing the mechanical properties of powder metallurgy niobium alloys under diverse alloy systems and processing routes, this study elucidates the intrinsic relationships among processing parameters, microstructure evolution, and performance outcomes. Finally, future research directions are proposed, encompassing cost-effective high-efficiency powder synthesis, novel strategies for strength-toughness synergy, optimization of binder-assisted 3D printing processes, and breakthroughs in manufacturing technologies for high-performance complex components.