当前位置:首页 > 过刊浏览->2025年46卷第2期
激光增材制造316L及IN718的原位合金化及其 微观组织与力学性能研究
Research on In-situ Alloying of 316L and IN718 via Laser Additive Manufacturing and Its Microstructure and Mechanical Properties
浏览(54) 下载(3)
- DOI:
- 作者:
- 张再云1,刘印刚1,2,李淼泉3
ZHANGZaiyun1, LIU Yingang1,2, LI Miaoquan3
- 作者单位:
- 1. 西北工业大学航空学院,陕西西安710072;2.西北工业大学飞行器基础布局全国重点实验室,陕西西安710072; 3. 西北工业大学凝固技术国家重点实验室,陕西西安710072
1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China; 2. National Key Laboratory of Aircraft Configuration Design, Northwestern Polytechnical University, Xi'an 710072, China; 3. State Key Laboratory of Solidification Process, Northwestern Polytechnical University, Xi'an 710072, China
- 关键词:
- 激光粉末床熔融;Fe-Cr-Ni合金;微观组织;力学性能
laser powder bed fusion; Fe-Cr-Ni alloy; microstructure; mechanical properties
- 摘要:
- 随着增材制造技术的不断发展,该技术逐渐成为推动制造业革新的核心动力。 当前,增材制造常用的金属 材料主要包括不锈钢、镍基高温合金、铝合金、钛合金等商业合金,但这些材料尚不能完全满足复杂多变的应用需求。因 此,开发适用于增材制造的新合金材料显得尤为重要。基于此,研究了基于316L不锈钢和IN718镍基高温合金粉 末,通过激光粉末床熔融,制造了一种新型的Fe-Cr-Ni合金材料。 结果表明,激光粉末床熔融实现了良好的原位合金 化,合金具有出色的打印性能。 同时,该合金展现出良好的室温拉伸性能,抗拉强度和屈服强度分别为(875±14)MPa和 (675±14) MPa,并保有 22.9%±3.8%的断后伸长率。With the continuous development of additive manufacturing technology, it has emerged as the core driving force for innovation in the manufacturing sector. Currently, the commonly employed metallic materials for additive manufacturing include stainless steels, nickel-based superalloys, aluminium alloys, and titanium alloys. However, these materials do not fully satisfy the complex and variable application requirements. Hence, the development of new alloys suitable for additive manufacturing is particularly important. This study focuses on the development of a new Fe-Cr-Ni alloy via laser powder bed fusion based on 316L stainless steel and IN718 nickel-based superalloy powders. The results indicate that through laser powder bed fusion, good in situ alloying is achieved, and the alloy exhibits excellent printability. Additionally, this alloy demonstrates good room-temperature tensile properties, with a tensile strength and yield strength of (875±14) MPa and (675±14) MPa, respectively, maintaining an elongation to fracture of 22.9%±3.8%.