当前位置:首页 > 过刊浏览->2024年45卷第8期
基于固溶强化的激光定向能量沉积TiZr基高熵合金成分设计与强塑性优化
Composition and Strength-plasticity Optimization of TiZr-based High-entropy Alloy through Solid Solution Strengthening by Laser Directed Energy Deposition
浏览(1424) 下载(22)
- DOI:
- 作者:
- 邬良怡1,2,于 君1,2,林 鑫1,2,闫乔单1,2,王林增1,2,牛毅豪1,2
WULiangyi1,2, YU Jun1,2, LIN Xin1,2, YAN Qiaodan1,2, WANG Linzeng1,2, NIU Yihao1,2
- 作者单位:
- 1. 西北工业大学凝固技术国家重点实验室,陕西西安710072;2.西北工业大学高性能金属增材制造工信部重点实验 室,陕西西安710072
1. State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China; 2. Key Laboratory of Metal High Performance Additive Manufacturing and Innovative Design, MIIT China, Northwestern Polytechnical University, Xi'an 710072, China
- 关键词:
- 激光定向能量沉积;单相TiZr基高熵合金;强塑性平衡;固溶强化
laser-directed energy deposition; single-phase TiZr-based high-entropy alloy; balance of strength and plasticity; solution strengthening
- 摘要:
- 目前,部分TiZr基高熵合金由于大量脆性相的析出,呈现出强塑性难以平衡的问题,阻碍了合金作为复杂 构件材料的工程应用。利用激光定向能量沉积技术基于混合元素法及非平衡快速凝固特性,实现成分设计的独特 优势。 通过调整TiZr基高熵合金主元成分,实现了非等原子比Ti39 Zr39 Nb11 Mo5.5 V5.5的致密成形,并获得了无金属间化合 物等脆性相析出的单相固溶体合金。 合金呈现出优异的塑性变形能力,其压缩应变超过了50%,而50%应变率时 的压缩应力达2194MPa。 进一步分析表明,固溶强化是合金呈现较高强度的关键,其对屈服强度的贡献超过了 75%。Currently, some TiZr-based high-entropy alloys have difficulty balancing strength and plasticity because of the large amount of brittle precipitation. This limitation hinders their engineering application as structural materials for complex components. Laser-directed energy deposition (LDED) technology provides unique advantages in composition design through the mixed element method and rapid nonequilibrium solidification. Therefore, the primary elements of the TiZr-based high-entropy alloys in this study were adjusted, leading to the achievement of a nonequiatomic Ti39 Zr39 Nb11 Mo5.5 V5.5 alloy with high relative density via LDED. Furthermore, a single-phase solid solution was obtained without the precipitation of brittle phases. The alloy exhibits excellent plastic deformation capability, with a compressive strain exceeding 50%. At a strain rate of 50%, the compressive stress reaches 2 194 MPa. Solid solution strengthening contributes approximately 75% of the yield strength, which is crucial to the high strength of the alloy.