当前位置:首页 > 过刊浏览->2024年45卷第6期
钢/铝双金属固-液复合工艺研究
Research on the Solid-liquid Composite Process of Steel/Aluminium Bimetal
浏览(1505) 下载(11)
- DOI:
- 作者:
- 张 达,周建溢,孙建波,黄志求,张云龙,焦玉凤,胡 明
ZHANG Da, ZHOU Jianyi, SUN Jianbo, HUANG Zhiqiu, ZHANG Yunlong, JIAO Yufeng, HU Ming
- 作者单位:
- 佳木斯大学 材料科学与工程学院,黑龙江 佳木斯 154007
School of Materials Science and Engineering, Jiamusi University, Jiamusi 154007, China
- 关键词:
- 冲击射流强化换热;钢 / 铝双金属;固 - 液复合;镀锌
shock jets enhance heat exchange; steel/aluminium bimetal; solid-liquid composite; electrogalvanized
- 摘要:
- 研究冲击射流固 - 液复合法制备钢 / 铝复合材料,预先对钢基体表面预处理,在浇铸过程中改变钢基体的移动速度,使得铝液与钢基体产生不同程度强化换热作用。 利用 SEM 、 XRD 、 EDS 及导热仪检测分析钢 / 铝复合层的组织形貌、成分及导热性 , 用万能力学试验机测量其剪切强度。 实验结果表明,随着钢基体移动速度升高,铝液对钢基体冲击射流换热量减小,复合界面由 Fe/Al 金属间化合物组成,钢基体表面镀锌层起到了润湿、漫流、保护作用,有效提升了钢/ 铝之间结合强度。 在浇铸温度 810 ℃ ,钢基体移动速度为 12 mm/s 时,测得结合强度为 19.1 MPa ,测得最高热导率为88.23 W/(m · K) 。The preparation of steel/aluminium composites by the impact jet solid-liquid composite method was studied. The surface of the steel matrix was pretreated in advance, and the moving speed of the steel matrix was changed during the casting process, resulting in different degrees of enhanced heat exchange between the molten aluminium and the steel matrix. The microstructure, morphology, composition and thermal conductivity of the steel/aluminium composite layer were detected and analysed via SEM, XRD, EDS and thermal conductivity, and the shear strength was measured via a universal testing machine. The experimental results show that with increasing moving speed of the steel matrix, the heat transfer of the impact jet of the molten aluminum on the steel matrix decreases. The composite interface is composed of Fe/Al intermetallic compounds, and the galvanized layer on the surface of the steel matrix plays the role of wetting, diffuse flow and protection, which effectively improves the bonding strength between the steel and aluminum. At a casting temperature of 810 ℃ and a moving speed of the steel matrix of 12 mm/s, the measured bonding strength is 19.1 MPa, and the highest thermal conductivity is 88.23 W/(m · K).