当前位置:首页 > 过刊浏览->2023年44卷第5期
电场辅助镁锰超疏水类水滑石膜的制备及耐蚀性研究
Research on the Preparation and Corrosion Resistance of Mg-Mn Superhydrophobic Layered Double Hydroxide Films Assisted by an Electric Field
浏览(3103) 下载(8)
- DOI:
- 作者:
- 张兆裕 1 ,黄 予 1 ,王 燕 1 ,孙天逸 1 ,汪永民 1 , 2 ,巴志新 1 , 2
ZHANG Zhaoyu 1 , HUANG Yu 1 , WANG Yan 1 , SUN Tianyi 1 , WANG Yongmin 1,2 , BA Zhixin 1,2
- 作者单位:
- 1. 南京工程学院 材料科学与工程学院,江苏 南京 211167;2. 江苏省先进结构材料与应用技术重点实验室,江苏 南京 211167
1. School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, China; 2. Jiangsu Province Advanced Structural Materials and Application Technology Laboratory, Nanjing 211167, China
- 关键词:
- 镁合金;电场辅助;耐蚀性;超疏水;类水滑石
magnesium alloy; electric field assistance; corrosion resistance; superhydrophobic; layer double hydroxide
- 摘要:
- 为了进一步提升镁合金作为生物医用材料的临床应用,本研究采用电场辅助法在 ZK60 镁合金表面制备了超疏水类水滑石膜 (SH) 以提高耐蚀性,并用 X 射线衍射仪 (XRD) 、扫描电镜 (SEM) 分析了膜层的表面成分和形貌,实验结果表明膜层表面主要成分为肉豆蔻酸钙 (Ca[CH 3 (CH 2 ) 12 COO] 2 ) 和镁锰类水滑石膜 (Mg 6 Mn 2 (OH) 16 CO 3 · 4H 2 O) 。用电化学测试和接触角测试表征了膜层的耐蚀性,最佳制备工艺下超疏水膜层试样接触角达到 152.5 ° ,腐蚀电流密度(4.73 × 10 -7 A · cm -2 ) 与基体 (6.53 × 10 -5 A · cm -2 ) 相比下降了约 2 个数量级,显著减缓了镁合金基体在模拟体液 (SBF) 中的降解速率。To further improve the clinical application of magnesium alloys as biomedical materials, a superhydrophobic (SH) layered double hydroxide (LDH) film was prepared on the surface of a ZK60 magnesium alloy by an electric field-assisted method to improve the corrosion resistance. The surface composition and morphology of the film were analysed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The experimental results show that the main components of the film surface are calcium myristate (Ca[CH 3 (CH 2 ) 12 COO] 2 ) and Mg-Mn LDH (Mg 6 Mn 2 (OH) 16 CO 3 · 4H 2 O). The corrosion resistance of the film was characterized by electrochemical and contact angle tests. Under the optimal preparation process, the contact angle of the superhydrophobic film sample reaches 152.5°, and the corrosion current density decreases by approximately 2 orders of magnitude compared with the substrate, significantly slowing the degradation rate of the magnesium alloy substrate in simulated body fluid (SBF).