当前位置:首页 > 过刊浏览->2022年43卷第12期
303t钢锭凝固过程缩孔分布及其影响因素的 模拟研究
Numerical Simulation of Shrinkage Cavity Distribution and its Influencing Factors during Solidification of 303-ton Steel Ingot
浏览(2781) 下载(9)
- DOI:
- 作者:
- 张 伦 1 ,周秋月 2 ,陈 威 1 ,王亚栋 3 ,张立峰 3
ZHANG Lun1 , ZHOU Qiuyue2 , CHEN Wei1 , WANG Yadong3 , ZHANG Lifeng3
- 作者单位:
- 1. 燕山大学 机械工程学院,河北 秦皇岛 066044;2. 北京科技大学 冶金与生态工程学院,北京 100083;3. 北方工业大 学 机械与材料工程学院,北京 100144
1. School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China; 2. School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China; 3. School of Mechanical and Materials Engineering, North China University of Technology, Beijing 100144, China
- 关键词:
- 钢锭;缩孔;铸造温度;保温材料;冒口高度
ingot; shrinkage; casting temperature; insulation material; height of the upriser
- 摘要:
- 本研究基于国内某厂 16Mn 钢 303 t 钢锭的生产过程,通过 ProCAST 软件建立三维凝固数学模型,研究了
铸造温度、保温材料以及冒口高度对钢锭缩孔和凝固时间等的影响规律。 通过对比实际生产过程中钢锭温度以及凝固
完成后缩孔的测量值和预测值验证了模型的准确性。 初始工况下钢液从底部和侧壁开始凝固,中心液相呈现从“U”形-
“V”形-半椭圆形的变化,凝固时间约为 54 h。 针对不同工艺下钢锭的凝固过程进行计算,得到了缩孔深度和凝固时间
的拟合公式,为指导实际生产提供了理论依据。 结果表明,随着铸造温度的升高,钢锭的缩孔深度逐渐加深,凝固时间逐渐增加;随着保温材料导热性的增加,缩孔深度逐渐加深,凝固时间逐渐降低;随着冒口高度的增加,钢锭的缩孔深度逐渐减小,凝固时间逐渐增大。
Based on the production process of a 16Mn steel 303 t ingot in a domestic plant, a three-dimensional solidification mathematical model was established by ProCAST software to investigate the effect of the casting temperature, insulation material and height of the upriser on the shrinkage cavity and solidification time during solidification. The accuracy of the model was verified by comparing the measured and predicted values of the ingot temperature in the actual production process and the shrinkage cavity after solidification. In the initial working condition, the liquid steel solidifies from the bottom and sidewall, and the central liquid phase changes from a "U" shape to a "V" shape and then to a semioval shape. The solidification time is approximately 54 h. The solidification process of the steel ingot under different technologies was calculated, and the fitting formula of the shrinkage cavity depth and solidification time was obtained, which provided a theoretical basis for guiding actual production. The results show that with increasing casting temperature, the shrinkage cavity depth of the ingot gradually deepens, and the solidification time gradually increases. With the increase in the thermal conductivity of the thermal insulation material, the shrinkage cavity depth gradually deepens, and the solidification time gradually decreases. With increasing riser height, the shrinkage cavity depth of the ingot decreases, and the solidification time increases.