当前位置:首页 > 过刊浏览->2022年43卷第12期
2195铝合金叠层搅拌摩擦增材制造数值模拟研究
Numerical Simulation of Friction Stir Additive Manufacturing of 2195 Aluminum Alloy
浏览(3236) 下载(6)
- DOI:
- 作者:
- 苏 宇 1,2 ,李文亚 1,2 ,杨夏炜 1,2 ,邹阳帆 1,2 ,申志康 3 ,吴 东 1,2
SU Yu1,2, LI Wenya1,2, YANG Xiawei1,2, ZOU Yangfan1,2, SHEN Zhikang3 , WU Dong1,2, CHU Qiang4
- 作者单位:
- 1. 西北工业大学 材料学院,陕西 西安 710072;2. 西北工业大学 凝固技术国家重点实验室,陕西 西安 710072;3. 西南 大学 工程技术学院,重庆 400715;4. 西安航天发动机有限公司,陕西 西安 710100
1. School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China; 2. State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China; 3. College of Engineering and Technology, Southwest University, Chongqing 400715, China; 4. Xi'an Aerospace Engine Co., Ltd., Xi'an 710100, China
- 关键词:
- 叠层搅拌摩擦增材制造;高强铝合金;数值模拟;温度场;流变行为
friction stir additive manufacturing; high-strength aluminum alloy; numerical simulation; temperature field; rheological behavior
- 摘要:
- 高强铝合金兼具轻质和高强等诸多优点,在航空航天制造领域的应用也越来越广泛,而叠层搅拌摩擦增材
制造技术(friction stir additive manufacturing, FSAM)为其一体化制造成形提供了潜在的应用前景,同时进一步提升高强
铝合金复杂构件的服役性能。 本文采用数值模拟的研究方法,基于耦合欧拉-拉格朗日算法,建立了 2195 铝合金 FSAM
过程的三维有限元热力耦合计算模型,分析了 FSAM 过程中增材构件温度场、流场以及应变场的分布规律,旨在为研究
FSAM 构件的成形特征及材料流变行为提供理论基础,为改善高强铝合金 FSAM 构件的成形质量提供指导。
High-strength aluminum alloys have been widely used in aerospace manufacturing field, due to their advantages of lightweight and high strength. The friction stir additive manufacturing (FSAM) technology provides a potential application prospect for integrated manufacturing forming for high-strength aluminum alloys, which will further improve the service performance of complex components. In this study, a 3D finite element model of the 2195 aluminum alloy was established in the FSAM process by numerical simulation, based on the coupled Eulerian-Lagrangian (CEL) algorithm. The distribution of temperature field, flow field and strain field in the FSAM process were analyzed, which can provide a theoretical basis for studying the forming characteristics and material rheological behavior of FSAM workpieces, and provide guidance for improving the forming quality of high-strength aluminum alloys.