当前位置:首页 > 过刊浏览->2022年43卷第8期
磁场下金属增材制造研究进展
Research Progress in Metal Additive Manufacturing under Magnetic Field
浏览(4067) 下载(11)
- DOI:
- 作者:
- 陈超越 1,2 ,王江 1,2 ,任忠鸣 1,2
CHEN Chaoyue1,2, WANG Jiang1,2, REN Zhongming1,2
- 作者单位:
- 1. 上海大学 省部共建高品质特殊钢冶金与制备国家重点实验室,上海 200444;2. 上海大学 材料科学与工程学院,上海 200444
1. State Key Laboratory of Advanced Special Steels, Shanghai University, Shanghai 200444, China; 2. School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
- 关键词:
- 增材制造;静磁场;交变磁场;微观组织;力学性能
additive manufacturing; static magnetic field; alternative magnetic field; microstructure; mechanical property
- 摘要:
- 磁场下增材制造(Magnetic field tailored additive manufacturing, MAM)技术凭借电磁场独特的无接触式控
制特点,可以显著影响金属微熔池内部流动及传热过程,改善冶金质量并调控凝固组织。 MAM 技术有助于解决传统高
能束增材制造过程中难以避免的气孔、裂纹及元素偏析缺陷,抑制组织柱状晶和强织构特征,获得优异综合力学性能,
有望进一步扩展增材制造技术的应用范围。 尽管电磁场下冶金及相变过程已有大量研究,然而磁场对增材制造非稳态
复杂热循环成形过程的作用机制及影响效果尚不明确。 本文综述了静磁场以及交变磁场作用下的增材制造研究进展,
分析了磁场对于气孔、残余应力及元素偏析等冶金缺陷和微观凝固组织及综合力学性能的影响效果,探讨了磁场对于
增材制造成形过程中熔体流动、凝固及固态相变的影响机制,并展望了未来研究方向和应用前景。
Magnetic field tailored additive manufacturing (MAM) technology can significantly affect the flow and heat transfer process in metal micropools, improve the metallurgical quality and control the solidification structure by virtue of the unique contactless control characteristics of electromagnetic fields. MAM technology can help to solve the unavoidable pores, cracks and element segregation defects in the traditional high-energy beam additive manufacturing process, inhibit the columnar crystal and strong texture characteristics of the microstructure, and obtain excellent comprehensive mechanical properties, which is expected to further expand the application scope of additive manufacturing technology. Although there have been a lot of studies on metallurgy and phase transformation process under electromagnetic field, the mechanism and effect of magnetic field on unsteady complex thermal cycle forming process of additive manufacturing are still unclear. In this paper, the research progress of additive manufacturing under static and alternating magnetic fields is reviewed. The effects of magnetic field on metallurgical defects such as porosity, residual stress and elemental segregation, microstructure and comprehensive mechanical properties are analyzed. The influence mechanism of magnetic field on melt flow, solidification and solid phase transition in additive manufacturing is discussed, and the future research direction and application prospect are prospected.