当前位置:首页 > 过刊浏览->2021年42卷第4期
480×900高镍铬离心复合轧辊熔合不良的 成因及控制
Cause and Control of Poor Fusion of High N-Cr Centrifugal Compound Rolls of 480×900
浏览(2772) 下载(8)
- DOI:
- 作者:
- 杨智强 1 ,吕潍威 1 ,苏 晨 1 ,郭红星 2
YANG Zhiqiang1 , LYU Weiwei1 , SU Chen1 , GUO Hongxing2
- 作者单位:
- 1.昆明工业职业技术学院 电气学院,云南 安宁 650302;2 云南昆钢重型装备制造集团有限公司,云南 安宁 650302
1. School Electrical, Kunming Industrial Vocational and Technical College, Anning 650302, China; 2. Yunnan KISC Heavy Equipment Manufacturing Group Co., Ltd., Anning 650302, China
- 关键词:
- 熔合层不良;离心复合铸造;高镍铬轧辊
poor fusion layer; centrifugal composite casting; high nickel-chromium roll
- 摘要:
- 工作层与芯部的熔合不良是 准480×900 高镍铬无限冷硬球墨铸铁轧辊产品中最主要的铸造缺陷,该缺陷一
般难于修复而直接导致轧辊报废。对 准480×900 离心复合铸造高镍铬无限冷硬铸铁轧辊熔合不良缺陷分析发现,工作层
离心浇注停机温度偏低、静态浇注填芯速度慢是造成熔合不良的主要原因。 浇注工作层铁液时“O”型玻璃渣加入过量、
芯部铁液浇注的温度过低、铁液纯净度差,也会造成熔合不良缺陷。 针对上述原因提出防治措施:根据产品尺寸及工艺
设计措施,合理加入“O”型玻璃渣;离心机停机要选择在工作层金属结晶平台温度以下 10~20 ℃;采用顶注法浇注芯部
铁液,温度控制在 1 385~1 410 ℃;减少离心机停机到芯部铁液浇注的时间间隔,可以有效防治工作层与芯部的熔
合不良。
The bad fusion between the working layer and the core was the most important casting defect in 准480×900 high Ni-Cr infinite cold ductile iron rolls. This defect was usually difficult to repair and directly leads to scrap of the rolls. The analysis of the defects of the high Ni-Cr infinite chilled cast iron roll of the 480 ×900 centrifugal composite casting has found that the main causes of bad fusion were low centrifugal pouring stop temperature and slow static pouring core filling speed in the working layer. When pouring molten iron in the working layer, excessive addition of ‘O’ type glass slag, too low casting temperature of molten iron in the core and poor purity of molten iron would also cause bad fusion defects. According to the above reasons, the prevention and control measures were put forward: according to the product size and process design measures, reasonable adding ‘O’ type glass slag; Centrifuge shutdown should be selected in the working layer of metal crystallization platform temperature below 10~20 ℃ ; The molten iron in the core was poured by top injection method and the temperature was controlled in the range of 1 385~1 410 ℃. The results show that reducing the time interval between centrifuge shutdown and molten iron pouring at the core can effectively prevent the bad fusion between the working layer and the core