当前位置:首页 > 过刊浏览->2022年43卷第6期
双相多尺度镀镍碳纤维和碳化锆颗粒增强铝基
Preparation and Mechanical Properties of Two-phase Multi-scale Nickel-coated Carbon Fiber and Zirconium Carbide Particle Reinforced Aluminum
浏览(3445) 下载(7)
- DOI:
- 作者:
- 周 璇1,高义民1,路向前1,赵四勇2
ZHOU Xuan1, GAO Yimin1, LU Xiangqian1, ZHAO Siyong2
- 作者单位:
- 1. 西安交通大学 金属材料强度国家重点实验室 材料科学与工程学院, 陕西 西安710049;2. 广西长城机械股份有限公司,广西 贺州542699
1. State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China; 2. Guangxi Great Wall Machinery Co., Ltd., Hezhou 542699, China
- 关键词:
- ZrC;碳纤维;铝基复合材料;显微硬度;拉伸性能
ZrC; carbon fiber; aluminum matrix composites; microhardness; tensile properties
- 摘要:
采用放电等离子体烧结制备了双相多尺度镀镍碳纤维和碳化锆颗粒增强铝基复合材料(Cf(Ni)-ZrC/2024Al)。为了提高碳纤维和基体的界面结合强度,对碳纤维进行了化学镀镍,研究了烧结工艺对复合材料的密度、显微硬度和拉伸强度的影响。结果表明,在烧结温度为480 ℃,烧结压力为30 MPa,保温时间为10 min时,可以得到结构致密,性能优异的铝基复合材料。复合材料的密度仅为2.71 g/m3,显微硬度、拉伸强度和伸长率分别为105.6 HV、 330 MPa和10.2%,力学性能均高于2024Al合金。力学性能的提高归因于表面化学镀碳纤维和基体良好的界面结合、ZrC的网状分布结构、以及增强相和基体热膨胀系数不匹配导致的位错增强。
Two-phase multiscale nickel-coated carbon fiber and Zirconium carbide particle reinforced aluminum matrix composites(Cf(Ni)-ZrC/2024Al) were prepared by spark plasma sintering. In order to improve the interfacial bonding strength between carbon fiber and matrix, electroless nickel plating was carried out on carbon fiber, and the effects of sintering process on the density, microhardness and tensile strength of the composite were studied. The results show that when the sintering temperature is 480 ℃, the sintering pressure is 30 MPa and the holding time is 10 min, the aluminum matrix composites with compact structure and excellent properties can be obtained. The density of the composite is only 2.71 g/m3, the microhardness, tensile strength and elongation are 105.6 HV, 330 MPa and 10.2%, respectively, and the mechanical properties are higher than 2024Al alloy. The improvement of mechanical properties is attributed to the good interfacial bonding between the carbon fiber and the substrate, the ZrC network distribution structure, and the dislocation enhancement caused by the mismatch of thermal expansion coefficient between the reinforcement phase and the substrate.