当前位置:首页 > 过刊浏览->2024年45卷第11期
基于机器学习方法的GH4175高温合金高温塑性与成分关联研究
Relationship Between High-temperature Plasticity and the Composition of the GH4175 Superalloy Discovered via Machine Learning
浏览(187) 下载(10)
- DOI:
- 作者:
- 刘宜瑞1,刘有云2,赵佳军1,虎小兵1,陈一鸣1,赵张龙1,李俊杰1,王志军1,王锦程1
LIU Yirui1, LIU Youyun2, ZHAO Jiajun1, HU Xiaobing1, CHEN Yiming1, ZHAO Zhanglong1, LI Junjie1, WA
- 作者单位:
- 1. 西北工业大学凝固技术国家重点实验室,陕西西安710072;2.中国人民解放军93147部队
1. State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China; 2. 93147 Troops of the Chinese People's Liberation Army
- 关键词:
- GH4175;机器学习;高温塑性;成分优化
GH4175; machine learning; high-temperature ductility; component optimization
- 摘要:
- GH4175合金是新型难变形高温合金的典型代表,通过成分优化提升其高温单相区变形能力,是避免该合 金铸锭开坯过程中开裂的重要前提。综合利用相图热力学计算、高温拉伸实验及机器学习方法,通过成分设计空间逐层 筛选优化以及自适应学习策略, 获得了影响该合金800℃γ′相体积分数、γ′相完全溶解温度和合金初始液化温度的关 键元素,建立了上述元素含量与高温伸长率之间的关系模型,明确了在保证一定热加工温度窗口和800℃γ′相体积分 数的前提下,同时具备优异高温塑性的合金成分范围及微观组织特征。The GH4175 alloy is a typical new difficult-to-deform superalloy. Optimizing its composition to enhance its deformation capability in the high-temperature single-phase region is a crucial prerequisite for preventing cracking during the cogging process of this alloy. By combining thermodynamic calculations, high-temperature tensile experiments, and machine learning methods, the composition of GH4175 was optimized. The key compositional elements that influence the γ′ phase volume fraction at 800 ℃, the γ′ phase dissolution temperature, and the alloy melting temperature are identified via design space screening and adaptive learning strategies. A relationship model between the content of these elements and high-temperature elongation is established, clarifying the compositional range that ensures excellent high-temperature ductility while maintaining a reasonable processing window and γ′ phase volume fraction at 800 ℃.