当前位置:首页 > 过刊浏览->2024年45卷第2期
放电等离子烧结制备 NiCoV 中熵合金微观结构与 力学性能研究
Microstructures and Mechanical Properties of a NiCoV Medium-entropy Alloy Processed by Spark Plasma Sintering
浏览(1647) 下载(14)
- DOI:
- 作者:
- 路圣晗1,陈颂阳1,蔡伟金1,龙 强1,赖敏杰2,熊志平3,王章维1,宋 旼1
LUShenghan1, CHEN Songyang1, CAI Weijin1, LONG Qiang1, LAI Minjie2, XIONG Zhiping3, WANGZhangwei1, SONG Min1
- 作者单位:
- 1. 中南大学 粉末冶金国家重点实验室,湖南 长沙 410083;2. 西北工业大学 凝固技术国家重点实验室,陕西 西安 710072;3. 北京理工大学 冲击环境材料技术国家级重点实验室,北京 100081
1. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China; 2. State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China; 3. National Key Laboratory of Science and Technology on Materials under Shock and Impact, Beijing Institute of Technology, Beijing 100081, China
- 关键词:
- 中熵合金;放电等离子烧结;工艺优化;力学性能
medium-entropy alloy; spark plasma sintering; process optimization; mechanical property
- 摘要:
- NiCoV 面心立方(FCC)单相中熵合金展现出卓越的强度和延展性,是一种极具应用潜力的结构材料。 本研 究采用放电等离子烧结(SPS)技术制备 NiCoV 合金,这一技术以其快速加热、低烧结温度和高产品致密度等优点而著称,特别适合于快速制备具有细小晶粒的高性能合金。 通过对粉末进行球磨处理,消除了合金制备过程中的孔隙缺陷。在随后的热轧处理中,合金中沿晶界分布的硬质相得以重新排布,形成了具有大量位错亚结构、纳米孪晶和均匀分布硬质相的复合微观结构。 这种结构有别于传统熔铸方法得到的均匀 FCC 单相结构的 NiCoV 合金。 SPS 工艺结合热轧处理所产生的复合微观结构,通过位错、析出相、纳米孪晶和晶界的多维度协同强化作用,使得合金的屈服强度达到1 360 MPa,抗拉强度达到 1 593 MPa,同时保持了 18.7%的均匀延伸率,实现了优异的强塑性匹配。 这项研究不仅优化 了 NiCoV 合金的微观结构和力学性能,还为高性能中熵合金的制备提供了一种新途径。The NiCoV face-centered cubic (FCC) single-phase medium-entropy alloy exhibits outstanding strength and ductility, making it a highly promising structural material. In this study, a NiCoV alloy was prepared using spark plasma sintering (SPS) technology, which is renowned for its rapid heating, low sintering temperature, and high product density, making it particularly suitable for the rapid fabrication of high-performance alloys with fine grains. By ball-milling the powder, porosity defects are eliminated in the alloy preparation process. During subsequent hot rolling, the hard phases distributed along the grain boundaries in the alloy are redistributed, forming a composite microstructure with abundant dislocation substructures, nanotwins, and uniformly distributed hard phases. This structure is distinct from the uniform FCC single-phase structure of NiCoV alloys produced by traditional casting methods. The composite microstructure generated by the SPS process combined with hot rolling, through the synergistic strengthening effect of dislocations, precipitates, nanotwins, and grain boundaries, results in achieving a yield strength of 1 360 MPa and a tensile strength of 1 593 MPa, while maintaining a uniform elongation rate of 18.7%, thus realizing excellent strength-ductility matching. This study not only optimizes the microstructure and mechanical properties of NiCoV alloys but also provides a new approach for the preparation of high-performance medium-entropy alloys.