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Numerical Simulation of the Electromagnetic Stirring Process for 7075
Aluminium Alloy Magnetohydrodynamic Molten Droplet—based
Additive Manufacturing

CHEN Hao, WANG Yongxin, LUO Xian, HU Rui, HUO Da
(State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China)

Abstract: This work proposed a strategy in which an electromagnetic stirring process was added to magnetohydrodynamic
molten metal droplet-based additive manufacturing to increase the melt composition uniformity and remove impurity gas.
By numerical simulation analysis, the stirring magnetic field traits of three different types of coil winding configurations
were systematically investigated, and the optimal electromagnetic stirring model was determined on the basis of the
trajectories and velocity distributions of the flow field. The results show that when windings with the same phase are
arranged adjacently in pairs and subsequently ordered according to phase differences, the resulting travelling wave magnetic
field electromagnetic stirring model is more suitable for molten droplet additive manufacturing processes, as it exhibits
complete spatial penetration characteristics in the molten metal flow field and provides the highest stirring intensity. The
influence of the current amplitude and frequency on the stirring intensity was also investigated. Increasing the coil current
amplitude and frequency can enhance the stirring intensity to a certain extent. The simulation results indicate that the
optimal process parameters are a current amplitude of 300 A and a coil frequency of 5 Hz.
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Fig.1 Finite element model of electromagnetic stirring: (a) 2D axisymmetric model for electromagnetic stirring; (b) coil winding
configurations for different types of stirring magnetic fields; (c) meshing of the model
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Tab.1 Properties of 7075 aluminium alloy™

Density/(kg-m?)  Viscosity/(mPa-s)

Electrical conductivity/(S-m™)

Relative permittivity

Relative permeability

7075 Aluminium alloy

2447.9 1.37

3.7x10° 1

1
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:(a) Case 1; (b) Case 2; (c) Case 3

Fig.2 Magnetic flux density distributions of the three electromagnetic stirring models: (a) Case 1; (b) Case 2; (c) Case 3
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Fig.3 Lorentz force and induced current distributions of the three electromagnetic stirring models: (a) Case 1; (b) Case 2; (c) Case3
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Fig.5 Flow field distributions of the three electromagnetic stirring models: (a) Case 1; (b) Case 2; (c) Case 3
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Fig.6 Flow velocity evolution curves of the three electromagnetic stirring models: (a) position schematic of points A, B, and C in the
crucible; (b) velocity evolution curves at points A, B, and C for Case 1; (c) velocity evolution curves at points A, B, and C for Case 2;
(d) velocity evolution curves at points A, B, and C for Case 3
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Fig.8 Flow field distributions under different coil current amplitudes: (a) 50 A; (b) 100 A; (c) 150 A; (d) 200 A; (e) 250 A; (f) 300 A
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Fig.10 Flow field distributions at different frequencies: (a) 5 Hz; (b) 25 Hz; (¢) 50 Hz; (d) 100 Hz; (e) 500 Hz; (f) 1 000 Hz
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Fig.11 Axial velocity distribution profiles along the crucible

centerline under varying frequencies

r [ %71 Y

https://www.cnki.net

Fig.12 Variation curves of high intensity stirring zone scales
along the crucible axis at different frequencies
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