Vol.47 No.01

< 16 - FOUNDRY TECHNOLOGY Jan. 2026
DOI:10.16410/1.issn1000-8365.2026.5209
1 1 1 1 1 1,2 1,3,4
L] L] L] L] L H)
(1. /
030051 2. 030024 3.
100083 4. 110167)
, (GO)  ZM5 . . , PVA
GO/PVA-Al GO/Al ,
; . , 0.3%( )GO , a-Mg
s ,B-Mg,Al, ,GO/ZM5
23.1%, 8.1%, . ,GO
i 7ZM5 .
: TG2 A :1000-8365(2026)01-0016-09

Research on Squeeze Casting Preparation Technology for Magnesium
Matrix Composite Materials

CHEN Liwen', LI Jiacheng', ZHAO Yuan', JING Jianhui', FAN Ruyi', HOU Hua'?, ZHAO Yuhong'**

(1. Shanxi Key Laboratory of Intelligent Casting and Advanced Forming for New Materials, MOE Jointly Collaborative
Innovation Center for High-performance Al/Mg based Materials, School of Materials Science and Engineering , North
University of China, Taiyuan 030051, China; 2. School of Materials Science and Engineering, Taiyuan University of Science
and Technology, Taiyuan 030024, China; 3. Beijing Advanced Innovation Center for Materials Genome Engineering,
University of Science and Technology Beijing, Beijing 100083, China; 4. Institute of Materials Intelligent Technology,
Liaoning Academy of Materials, Shenyang 110167, China)

Abstract: Magnesium matrix composites exhibit outstanding properties, yet their fabrication processes remain imperfect. To
address this, the interfacial characteristics, microstructures, and mechanical properties of graphene oxide (GO)-reinforced
ZMS5 magnesium matrix composites were systematically investigated through a combined molecular simulation and
experimental approach. The calculations indicate that the bond energy of the GO/PVA-AI interface significantly exceeds
that of the untreated GO/Al interfaces following PVA surface treatment. This demonstrates that surface-treated reinforcements
effectively enhance interfacial bonding, thereby improving the overall composite performance. Microstructural analysis
reveals that after adding 0.3 wt.% GO and undergoing squeeze-casting, the a-Mg matrix transforms from dendritic to
equiaxed grains, with significant grain refinement. The precipitation of the 3-Mg;,Al;, second phase decreases and becomes
more uniformly distributed. Compared with the matrix alloy, the GO/ZMS5 composite exhibits a 23.1% increase in hardness
and an 8.1% improvement in tensile strength, with the fracture morphology shifting from brittle to ductile fracture. This
study demonstrates that the addition of GO significantly enhances the comprehensive mechanical properties of the ZMS5
magnesium matrix composites by refining the grains and improving interfacial bonding.
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Tab.1 GO performance parameters
Thickness Diameter Electron mobility Specific surface area Tap density Bulk density
Parameter
/nm /pm /(em®-V'-s) /(m?-g™") /(g-cm?) /(g-cm?)
Value 3~8 8~10 10~100 5~100 0.009 0.005 2
2 ZM5
Tab. 2 Composition of the ZMS matrix
(mass fraction/%)
Element Al Zn Mn Si Fe Cu Ni Mg
Content 7.5~9.0 0.2~0.7 0.15~0.50 <0.05 <0.004 <0.008 <0.008 Bal.
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Fig.1 Process flow diagram for graphene oxide pretreatment
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Fig.2 Process flow diagram for the preparation of GO/ZMS composite materials
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Fig.4 Optimized interface model: (a) Al(111) crystal plane model; (b) PVA model; (¢) GO(001) crystal plane structure model
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Tab.3 Interfacial spacing and binding energy of GO/Al and GO/PVA-AI interfaces before and after structural optimization

Bonding type EA/(eV -atom™) Ew/(eV-atom™) Eco/(eV -atom™) Eg/(eV -atom™) E../(meV -atom™)
GO/Al -227.276 - -224.000 -451.558 -2.976
GO/PVA-Al -227.276 -165.597 -224.000 -617.711 -6.714
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5 GO/Al,GO/PVA-Al :(a) GO/ALl; (b) GO/PVA-AI
Fig.5 GO/Al and GO/PVA-AIl composite interface models and corresponding insets: (a) GO/AL; (b) GO/PVA-AI
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Fig.6. OM micrographs of the ZM5 magnesium alloy and GO/ZMS magnesium-based composite: (a) ZMS5, low magnification;
(b) ZMS5, high magnification; (c) GO/ZMS, low magnification; (d) GO/ZMS, high magnification
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Fig.7 SEM micrographs of the ZMS5 magnesium alloy and GO/ZMS5 magnesium matrix composites: (a~c) ZM5 magnesium alloy;
(d~f) GO/ZMS magnesium matrix composites
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Fig.8 EDS elemental mapping of the ZM5 magnesium alloy: (a, b) EDS mapping; (c~f) elemental distribution maps for Mg, Al, Zn,
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and Mn, respectively
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Fig.9 EDS elemental mapping of the as-cast GO/ZM5 magnesium matrix composites: (a~c) EDS mapping; (d~i) elemental distribution
maps for Mg, Al, Zn, O, C, and Mn, respectively
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Fig.10 Mechanical property analysis of the ZM5 magnesium alloy and GO/ZMS magnesium matrix composites: (a) hardness
comparison; (b) stress-strain curves
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Fig.11 Tensile fracture morphology of the materials: (a) ZMS5 magnesium alloy; (b) GO/ZMS5 magnesium matrix composite
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