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Abstract: As a strategic and fundamental industry, new materials represent a crucial industrial direction for accelerating the
development of new-quality products and steadily promoting high-quality development. Materials genome engineering
(MGE) deeply integrates computational simulation, high-throughput experiments, and data science, significantly enhancing
the R&D efficiency of new materials. Its material databases and cross-scale models are becoming the technological
foundation for the in-depth application of artificial intelligence in material design, performance prediction, and other
aspects. With the rapid development of artificial intelligence technology, the combination of MGE and intelligent science is
facing unprecedented opportunities and challenges. This paper reviews the background and history of the emergence of
artificial intelligence in materials in the Al+ era, as well as its material data infrastructure and the Al technologies used. It
summarizes the applications of technologies such as machine learning and natural language processing in material reverse
design and screening, physical property prediction and characterization analysis, and performance optimization. It also
introduces the paradigm innovation of autonomous laboratory systems. Finally, this paper looks ahead to the potential
challenges that Al may face in the field of materials science and proposes directions and suggestions for future
improvement.
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Fig.1 Artificial intelligence accelerates materials design - the intelligent design and manufacturing paradigm of new materials shifted
from knowledge-enabled and data-driven ICME to Al-enabled cross-scale collaboration, driving a fundamental leap in the materials
R&D paradigm!"
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Fig.2 Policy and action outline for the “Strong Country Strategy” to drive the fusion and innovation of material genome engineering
and accelerate the engineering of key materials and the strategic planning roadmap for the development and application of artificial
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Fig.6 FSIMD architecture: (a) FSIMD workflow, which mainly includes sampling to generate crystal structures, uses general
machine-learning potentials and general property models for energy and property prediction, and full-space optimization. Discretize
and extend « and ¢ to unify the data types before and after generating crystal structures; (b) 42 elements used in the research process;

(c) atomic counting pool; (d) symmetry constraints for generating crystal structures; (¢) schematic diagram of the crystal data structure;
(f) schematic diagram of the performance of random search (RS), Bayesian optimization (BO), and element-enhanced sampling (EES)
in exploring the full space; (g) flow chart of the EES operation®!
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Fig.7 Core idea of the DeepH model: (a, b) through deep learning methods, local structural information is used to predict the DFT
Hamiltonian, thereby achieving efficient prediction of material properties!™
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Fig.9 Autonomous materials discovery via A-Lab uses the convex hull calculated via DFT, which is composed of the ground states
from the Materials Project, and Google DeepMind to identify unreported air-stable targets. Synthesis recipes for each target are
proposed via an ML model trained with synthesis data from the literature. Then, tests were conducted in a robotic laboratory!
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Fig.10 Design and working principle of the AI-EDISON platform: (a) taking gold nanoparticles (AuNPs) as an example, a schematic
diagram of the three-level linked chemical synthesis space in seed-mediated synthesis; (b) closed-loop method for exploration (blue
cycle) and optimization (red cycle); (c) three steps of the closed loop: synthesis, analysis, and design of new experiments through
algorithms; (d, ¢) CAD design and experimental setup of a chemical reaction module driven by a Geneva wheel, which contains units
for liquid dispensing, pH control, and solution transfer; (f) overall setup of the entire autonomous platform, including a temperature
controller, stock solutions, pumps, a chemical reaction module, a flow cell, a light source, and a spectrometer®
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