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摘 要：新材料作为战略性、基础性产业，是加快发展新质生产力、扎实推进高质量发展的重要产业方向。材料基因

工程(materials genome engineering, MGE)深度融合了计算模拟、高通量实验与数据科学，显著提升了新材料的研发效
率，其材料数据库与跨尺度模型正成为人工智能在材料设计、性能预测等环节深度应用构建的技术基座。随着人工智能

技术的飞速发展，MGE 与智能科学的结合正迎来前所未有的机遇与挑战。 本文综述了在 AI+ 时代，材料人工智能的出
现背景与历史，以及材料数据基础设施和所使用到的 AI技术，整理了机器学习和自然语言处理等技术在材料逆向设计
与筛选、物性预测与表征分析和性能优化等方面的应用，介绍了自主实验室系统的范式创新。最后，展望并提出了 AI在
材料科学领域面临的挑战，以及未来的完善方向和建议。
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Abstract： As a strategic and fundamental industry, new materials represent a crucial industrial direction for accelerating the
development of new-quality products and steadily promoting high-quality development. Materials genome engineering
(MGE) deeply integrates computational simulation, high-throughput experiments, and data science, significantly enhancing
the R&D efficiency of new materials. Its material databases and cross-scale models are becoming the technological
foundation for the in-depth application of artificial intelligence in material design, performance prediction, and other
aspects. With the rapid development of artificial intelligence technology, the combination of MGE and intelligent science is
facing unprecedented opportunities and challenges. This paper reviews the background and history of the emergence of
artificial intelligence in materials in the AI+ era, as well as its material data infrastructure and the AI technologies used. It
summarizes the applications of technologies such as machine learning and natural language processing in material reverse
design and screening, physical property prediction and characterization analysis, and performance optimization. It also
introduces the paradigm innovation of autonomous laboratory systems. Finally, this paper looks ahead to the potential
challenges that AI may face in the field of materials science and proposes directions and suggestions for future
improvement.
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图 1 人工智能加速材料设计—新材料的智能设计和制造范式从知识赋能数据驱动的集成计算材料工程(integrated
computational materials engineering, ICME)到 AI赋能跨尺度协同，驱动了材料研发范式的根本性跃迁[11]

Fig.1 Artificial intelligence accelerates materials design - the intelligent design and manufacturing paradigm of new materials shifted
from knowledge-enabled and data-driven ICME to AI-enabled cross-scale collaboration, driving a fundamental leap in the materials

R&D paradigm[11]

人工智能(artificial intelligence, AI)的崛起已然
势不可挡，正在颠覆人们对世界的认知和科学研究
的方式[1]。2024年诺贝尔物理学奖授予了约翰·霍普
菲尔德和杰弗里·辛顿， 他们基于物理学原理开创
了神经网络与深度学习的理论框架， 为 AI 的发展
奠定了坚实的基础。 化学奖获得者戴维·贝克、德米
斯·哈萨比斯和约翰·江珀 [2]利用 AI 突破了蛋白质
设计与结构预测的世纪难题，极大地加速了药物设
计、疾病机制解析及新材料研发的进程。 这些成就
不仅展示了 AI与基础科学的深度融合在科学研究
中的革命性作用，也标志着人类正进入“AI for Sci-
ence”的新纪元。
新材料作为战略性、基础性产业，是现代化产

业体系和新型工业化的重要支撑，是加快发展新质
生产力、 扎实推进高质量发展的重要产业方向 [3-4]。
人类历史上的技术革命均以材料突破为先导，材料
的革新直接定义文明阶段：石器时代→青铜时代→
铁器时代→钢铁时代→先进材料时代。 第一次工业
革命时期，钢铁冶炼技术的突破性进展及其规模化
生产为蒸汽机大规模制造与铁路网络快速扩张奠

定了材料基础 [5]；20 世纪末开启的信息技术革命浪
潮中，作为集成电路基底的超高纯度单晶硅，以及
基于氮化镓(GaN)宽禁带半导体的高频高功率器件，

分别成为驱动计算机算力跃升[6-7]与 5G 通信标准全
球部署[8]的核心材料基石；新能源时代，锂离子电池
正极材料影响其能量密度与循环寿命的协同优化，并
直接制约电动汽车的续航能力与全生命周期成本[9-10]，
进而成为全球交通领域电动化转型速率的关键影响

变量。
但长期以来， 新材料研发依赖于理论探索和经

验积累，需要经历反复实验，导致研发周期漫长、成
本高。 在这一背景下，AI对材料领域的赋能显得尤
为重要。 正如基因测序技术破译了生命密码，AI驱
动的 “材料基因工程”(materials genome engineering,
MGE)正以数据与算法为双螺旋，重构人类认知和设
计物质的底层逻辑，如图 1 所示[11]。 2024 年诺贝尔
物理学奖的神经网络模型与化学奖的蛋白质计算工

具，共同指向一个核心方向：通过建立材料“成分-结
构-性能”的全局映射关系，将传统依赖经验试错的
研发模式升级为“预测-验证-优化”的智能循环。 例
如， 基于深度学习的原子级模拟可精准预测合金的
力学行为，而生成式对抗网络(generative adversarial
networks, GAN) 能自动设计满足特定功能的分子
结构组合。这种“材料基因组”研究框架，已推动高通
量计算与自动化实验的深度融合， 使新材料的发现
周期从数十年缩短至数月[12]。
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图 2 “强国战略”驱动材料基因工程融合创新加速关键材料工程化的政策与行动纲要及我国 AI发展与应用的战略规划路线[13]

Fig.2 Policy and action outline for the “Strong Country Strategy” to drive the fusion and innovation of material genome engineering
and accelerate the engineering of key materials and the strategic planning roadmap for the development and application of artificial

intelligence in China[13]

近年来，各国政府纷纷出台相关政策，积极推
动 AI 的发展及其与材料科学的融合发展， 如图 2
所示 [13]。 2011 年，美国启动了“材料基因组计划”
(materials genome initiative, MGI)，旨在通过 AI和大
数据技术加速新材料的研发， 降低研发成本和风
险 [14]。 2014年又将“材料基因组计划”提升为“国家战
略”[15]。 2018 年，美国国家航空航天局(national aero-
nautics and space administration, NASA) 发布《2040
愿景： 材料体系多尺度模拟仿真与集成路径》[16]，该
项规划是 NASA 针对材料基因计算的有效分解和
具体行动路径。 紧随其后欧盟在 2018年发布了《欧
盟人工智能战略》[17]， 强调 AI在科学研究和工业创
新中的重要作用， 并投入大量资金支持相关研究。
德国于 2023 年颁布了《人工智能行动计划》[18]旨在

推动德国在人工智能领域的发展， 提升其在全球
的竞争力。 2024 年英国谷歌旗下人工智能公司
DeepMind 发布《一个新的发现黄金时代：抓住人工
智能助力科学的机遇》[19]指出 AI的应用不仅能够加
速科学发现，还能推动社会进步。 日本也在 2025年
3 月的 AI 战略会议与 AI 制度研究会议发布了《AI
战略 2025中期总结》[20]，旨在“构建全球最易开发与
应用的 AI生态”。中国于 2015 年启动了“材料基因
工程关键技术与支撑平台”重点专项，开展材料基

因工程基础理论、关键技术与装备、验证性示范应用
的研究，布局了示范性创新平台的建设[4]，并于2024 年
发布了《新材料大数据中心总体建设方案》[21]，为 AI
赋能材料科学提供了全面的政策支持和技术保障。
这些政策的出台，不仅促进了 AI技术的快速发展，也
为材料科学领域的创新提供了强有力的支持。
习近平总书记指出 “要以智能制造为主攻方向

推动产业技术变革和优化升级， 促进我国产业迈向
全球价值链中高端”。自 2015年我国启动“材料基因
工程关键技术与支撑平台”重点专项以来，以数据驱
动为核心的研发范式革新已全面展开。 在基础数据
建设层面， 由中国科学院物理研究所牵头建设的
Atomly材料数据库 [22]已收录无机晶体材料超 30 万
种，其数据维度覆盖电子结构、力学性能等关键参
数，成为全球权威材料数据库之一。 同时，北京大学
先进材料学院推出的开放平台 MaterialGo[23]、机数
量子建立的 Dcaiku[24]等专业化数据库的协同发展，
构建起覆盖金属、高分子、复合材料的全品类数据图
谱。在技术平台构建方面，北京材料基因工程高精尖
创新中心、 深圳材料基因工程及大数据研究院等区
域创新枢纽已形成 “基础研究-工程验证-产业转
化”的全链条服务范式。 2023年落成的 AI plus高分
子软件平台创新性地整合材料信息学、 机器学习与
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图 3 AI4Mater 的发展史[26]

Fig.3 Development history of AI4Mater[26]

工艺仿真系统，实现了从分子结构设计到成型工艺
优化的全流程数字化闭环，将特种工程塑料的研发
周期缩短 70%以上[25]。 这些系统性突破为我国新材
料研发向智能科学范式转型注入了强劲动能。
本文通过探讨政策驱动下 AI 技术对传统研究

范式的颠覆性变革路径， 揭示 AI 迭代升级与材料
科学研究的深度融合机制。 总结归纳了 AI 技术在
材料科学领域的不同应用场景，既能突破传统试错
法在组分-结构-性能关联建模中的维度限制，成功
逆向设计与筛选材料，又能融合第一性原理计算与
迁移学习的多物理场物性预测体系，实现材料物性
的精准推演与表征分析，还能通过贝叶斯优化算法
来提升材料的性能。 最后，介绍了自主实验室系统
的范式创新，展望了 AI+ 时代材料基因工程领域的
智能科学发展，并对可能面临的挑战进行了总结。

1 材料人工智能的出现
1.1 背景与历史
在大数据与 AI的深度耦合下， 催生出了材料

人工智能(AI for materials，AI4Mater)领域，开创性地
构建了计算设计-数据科学-实验验证三位一体的
创新闭环[26]。 这种以智能算法为中枢的创新范式革
命， 不仅实现了材料全生命周期(设计→合成→表
征→应用)的数字化贯通，更通过强化计算模拟与智
能实验系统的协同进化， 推动着材料研发新范式。
AI4Mater 的发展史如图 3 所示 [26]，在 2016 年以前
处于算法探索阶段，研究者主要聚焦于机器学习基
础工具链的构建，尝试将主动学习、强化学习等算
法引入材料数据分析。 到了 2016 年逐渐形成数据
驱动材料研发的新阶段，高通量计算与实验技术的
突破催生了材料大数据时代，研究者的重心开始转

向结构-性能关联型模型的深度挖掘。以数据为核心
的材料组分设计和工艺优化方法实现了规模化应

用， 新材料的发现效率也得到了提升，“计算-数据”
双轮驱动的模式逐渐走向成熟。 2020 年至今，处在
了 AI与材料研发深度融合的智能闭环集成阶段，生
成式对抗网络和跨尺度模拟算法与自主实验系统的

深度融合，推动着材料研发迈向新阶段 [27]。 AI 通过
现有材料的表征和计算平台进行数据采集， 利用模
型进行数据分析， 最终根据确定的数据特征生成新
材料。一路以来 AI技术的发展与融合对材料科学领
域研究产生着重大的影响。
1.2 数据管理
数据科学在材料研究中一直发挥着重大作用，

传统研究范式遵循 “假设构建→实验验证→数据分
析”的循环迭代路径，其效率受限于研究者的认知边
界与试错成本。随着计算材料学的突破，密度泛函理
论的精度提升与分子动力学的跨尺度模拟，使得可
筛选的数据通量呈指数级增长，且数据的复杂性和
多样性提升[28]。 MGI的提出标志着数据密集型研发
范式的确立，又通过构建 MGE 技术体系，实现了多
源异构数据的深度整合。在此过程中，实验和理论计
算积累的大量数据成为了实现数据密集型研发范式

的前提[29]，因为像 GNoME[30]等高性能模型都需要基

于数以万计的高质量材料数据进行训练。其次,高通
量计算同样也需要大量可靠结构作为初始输入, 才
得以通过计算结果来分析材料的演化规律。同样的，
AI4Mater 系统的底层支持也是材料数据的基础设
施，涵盖数据处理工具、数据存储库、电子协作平台
以及标准和协议。近年来，随着材料数据复杂性和多
样性的增加， 传统的数据库设计方法已无法满足需
求，新型的数据库系统如 MGEDATA[31]应运而生。这
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图 4 基于 LLMs的自动化合金设计[51]

Fig.4 Automated alloy design based on large language models (LLMs)[51]

些系统通过提供可重用的数据类型，实现了材料数
据模式的后定义和标准化存储，极大地促进了材料
数据的开放共享和无缝连接。
1.3 AI技术的创新
为了简化材料研发周期，AI是一个强有力的辅

助工具，通过数据共享来预测和筛选先进材料的物
理化学性质，从而加快新材料的合成和生产。 如今
AI 技术通过模拟、扩展和辅助人类智能，构建了涵
盖机器学习(machine learning, ML)[32]、深度学习(deep
learning, DL)[33]、计算机视觉(computer vision, CV)[34]

和自然语言处理(natural language processing, NLP)[35]

等核心方法的技术矩阵。 这些技术相互交织，共同
推动了 AI在材料研究领域的广泛应用和发展。 作
为数据驱动型人工智能的核心范式，ML 基于统计
学习理论构建的监督学习、无监督学习、半监督学
习与强化学习的技术网络 [36-37]，在材料科学领域已
实现新型稳定材料预测 [38-39]、高通量性质计算及跨
尺度建模等突破[40-44]。而 CV技术更是基于多尺度特
征融合技术解析获得视觉信息，例如，U-Net 能对复
杂金相图像高精度分割，并基于此准确测量金属晶
粒尺寸 [45]；基于改进 YOLOv5 算法和 RealSense 深
度相机的机器人焊接引导系统 [46]，通过嵌入坐标注
意力模块提高焊缝检测精度，并结合深度信息实现
焊缝的精确定位，显著提升了焊接机器人的自动化
和智能化水平。快速发展的 NLP通过注意力机制与

预训练模型突破了文本语义解析瓶颈，transformer
和预训练语言模型(如 BERT[47]、GPT 系列)在 DL 技
术的推动下，在自然语言理解任务中表现出色，显著
提升了机器翻译、 文本生成和问答系统的性能[48-49]。
尤其是大语言模型(large language models, LLMs)的
爆发式创新标志着材料研究范式的转变[50]， 如图 4
所示 [51]，LLMs在合金设计和材料研究中的应用有 4
个级别，具体包括Ⅰ级应用：LLMs 全面检索、总结
并在一定程度上分析大量的参考文献， 这通常是合
金制造设计的第一步。 Ⅱ级应用：LLMs可以提供以
词向量为代表的补充特征， 以提高特定机器学习模
型的准确性。 Ⅲ级应用：LLMs 可以产生想法和假
设，验证科学概念，设计合金，并提出合成和加工它
们的建议方法。Ⅳ级应用：涉及到基于 LLM-agent的
金属材料设计与制造的整个工作流程的开发， 包括
它的自主执行。综上所述的 AI技术通过算法协同与
数据共享，共同推动了材料研发从“试错迭代”向“预
测设计”的范式跃迁。

2 AI助力材料领域研究
材料创新是推动科技进步和产业发展的关键驱

动力。 新材料的发现和应用不仅能够显著提升现有
产品的性能，还能开辟全新的技术领域和市场机会。传
统实验在发现和表征新材料方面发挥着关键作用，但
由于实验消耗大、周期长，依赖实验设备的配置，对材
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料探索范围有限[52]。 计算方法的出现推动了材料科学
的第一次计算革命 [53]，特别是基于密度泛函理论的
第一性原理计算[54-55]、蒙特卡罗模拟[56]和分子动力学

模拟[57]，使研究人员能够更有效地探索相和组成空间。
如图 5所示，将实验和计算机模拟相结合，可以大大
缩短材料设计的时间和成本 [58]，如图 5 所示，工艺-
组织-性能的循环为材料的创新和改进提供了可
能 [59]。 AI技术的融入，推动了材料科学领域的第二
次计算革命 [37]，以前所未有的深度重塑材料科学的
研究范式， 通过算法驱动的高维数据分析与跨尺
度建模能力 ，将传统试错型材料研发转化为智能
化的理性设计[60-62]。

2.1 材料的逆向设计与筛选
随着 AI技术的飞速发展， 其在材料科学领域

的应用日益广泛，特别是在材料逆向设计与筛选方
面展现出巨大潜力。 通过高效的数据处理和智能算
法，AI 能够在逆向设计中提供创新性的解决方案，
同时显著提升材料筛选的效率和准确性。
在材料逆向设计方面，龚新高院士团队 [63]解决

了传统材料设计方法中需要预先指定原子组成、化
学计量比和晶体结构的局限性，以及全空间优化中
离散变量和连续变量组合带来的复杂性问题，提出
了名为全空间逆向材料设计的新方法 FSIMD。如图
6 所示，结合了通用机器学习势能、通用性质模型和

优化算法，能够在无需预先指定原子组成、化学计量
比和晶体结构的情况下，自动化设计具有目标物理
性质的材料，为逆向材料设计提供了一种高效的新
途径。 同样，DeepMind研究团队[64]基于大规模图神

经网络和深度学习技术，解决了材料发现的瓶颈以
及机器学习在材料科学中应用的局限性问题，开发
了一种创新框架 GNoME， 用于加速无机晶体材料
的发现，最终发现了超过 220 万种新的稳定晶体结
构，其中共有 42.1 万种为稳定晶体，显著扩展了已
知稳定晶体的数量。 上海交通大学研究团队[65]将强

化学习和条件变分自编码器相结合，高效地探索合
金设计的大成分空间。 他们应用强化学习逆向设计
出了具有高相变焓的 TiNi 基相变合金，高效地从超
过 2 亿种候选材料中筛选出具有最高相变焓的多
组分合金，通过迭代优化与实验验证相结合，超越了
传统的设计方法。
在材料筛选方面，Pennington 等 [66]基于无监督

词嵌入 Word2vec [67-68]/GloVe[69]的材料知识挖掘框

架，通过分析 330万篇材料科学领域的文章摘要，构
建 200维语义向量空间，成功揭示元素周期律及材料
结构-性能关联，筛选出了 10 种候选材料，其最大
功率因子达已知材料平均值的 3.6 倍。 而中国科学
技术大学团队 [70]更是设计出首个 AI 驱动的自动化
化学家系统，它集成了火星矿石预处理、催化剂自
主合成与高通量测试为一体，通过结合机器学习与
贝叶斯优化， 在 3×106级配方空间中实现了将筛选
效率提升五个数量级。 该系统通过结合机器学习模
型和贝叶斯优化算法，利用第一性原理计算数据和
实验测量数据，从超过 300万种可能的组合中自动筛
选出最佳催化剂配方。 中国人民大学高泽峰教授团
队 [71]通过从Materials Project数据库中筛选出 91 649
种潜在的磁性材料，并利用对称性分析进一步缩小
范围， 构建了包含 68 116种材料的预训练数据集和
42 377 种候选材料的数据集。 通过 AI 模型预测和
第一性原理电子结构计算验证，成功筛选出了 50种
新的变磁性材料，还首次发现了 4 种 i-wave 变磁性
材料，填补了该领域的研究空白。Davies等[72]通过量

化无机材料成分空间，利用电荷中性和电负性平衡
等化学规则，将四元材料候选数量从超过 1012种减
少到 1010种。开发并利用 SMACT开源的 Python工具
包，筛选出了新型适合用于太阳能驱动水分解的光
电解水材料 Sn(II)5S4Cl2，还通过结构类比和化学替
换的方法，预测筛选出了数千种新的钙钛矿材料。
2.2 材料的物性预测与表征分析
基于 DFT 和 ML 的方法在物性预测和表征分

图 5 工艺-组织-性能的循环为材料的创新和改进提供了可
能:该方法将高通量实验捕获的过程-微观结构-性能数据(绿
色圆圈)与计算材料科学模型(橙色圆圈)联系起来, 贯通制造
和全寿命监测的出现将提供直接来自生产和服役数据(蓝色

圆圈)的微观结构和性能信息[59]

Fig.5 The cycle of process-microstructure-property provides the
possibility for the innovation and improvement of materials.

This method links the process, microstructure, and property data
captured by high-throughput experiments (green circles) with
computational materials science models (orange circles). The
emergence of through-manufacturing and full-life monitoring
will provide information on microstructure and properties
directly from production and service data (blue circles)[59]
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图 6 FSIMD架构：(a) FSIMD工作流程，主要包括采样生成晶体结构、利用通用机器学习势和通用属性模型进行能量和性质预
测以及全空间优化。 对 a 和 c 进行离散化和延拓操作，统一生成晶体结构前后的数据类型；(b)研究过程中使用的 42 种元素；
(c)原子计数池；(d)生成晶体结构的对称性约束；(e)晶体数据结构示意图；(f)随机搜索(RS)、贝叶斯优化(BO)和元素增强采样

(EES)探索全空间的性能示意图；(g) EES操作流程[63]

Fig.6 FSIMD architecture: (a) FSIMD workflow, which mainly includes sampling to generate crystal structures, uses general
machine-learning potentials and general property models for energy and property prediction, and full-space optimization. Discretize
and extend a and c to unify the data types before and after generating crystal structures; (b) 42 elements used in the research process;
(c) atomic counting pool; (d) symmetry constraints for generating crystal structures; (e) schematic diagram of the crystal data structure;
(f) schematic diagram of the performance of random search (RS), Bayesian optimization (BO), and element-enhanced sampling (EES)

in exploring the full space; (g) flow chart of the EES operation[63]

析中发挥着至关重要的作用。 DFT通过计算电子结
构，能够准确预测材料的物理和化学性质，为新材料
的设计提供理论基础。 而ML则通过大数据分析和模
式识别，能够快速筛选出具有特定性能的材料，并优
化其结构和性能。 结合 DFT 和 ML，不仅可以提高
预测的准确性和效率， 还能在复杂材料系统中发现新
的物性规律，为材料科学的发展带来革命性的突破。
在材料物性预测方面，段文晖院士团队 [73]提出

了一种基于深度学习的 DFT 哈密顿量的通用材料
模型 DeepH。 如图 7 所示，通过构建大规模材料数
据库和改进的 DeepH-2 方法，实现了对复杂材料结
构与性质关系的高效建模。首次实现跨元素、跨结构
的电子态精准预测，使用了约 10 000 种固体材料的
数据集， 并引入等变变换器架构和规范等价性调整
损失函数， 成功训练出一个能够处理多种元素和结
构的通用模型，预测 DFT 哈密顿量的平均绝对误差
低至 2.2 meV。 针对光电材料设计 (如发光二极管
(LED)[74]、光伏 [75-76]、闪烁体 [77]等)中带隙需精准预测
的需求，休斯顿大学研究团队 [78]利用支持向量分类

将金属与非金属区分开来， 随后通过支持向量回归
预测非金属的带隙的机器学习模型， 训练了 3 896

个实验测量的带隙值(涵盖 2 458 种独特成分)，该模
型在区分金属和非金属方面达到了 92%的准确率，
并且在预测非金属带隙时， 其预测结果与实验值非
常接近。 Kalidindi[79]开发出了能够将新兴数据分析
工具与材料科学和工程领域中使用的工具集协同使

用的人工智能材料知识系统 AI-MKS框架， 通过整
合多点空间相关性与高斯过程回归， 构建跨尺度关
联模型，实现从微结构特征到宏观性能的精准预测。
Häse 等[80]通过整合机器学习与量子力学模型，构建
了激发能量转移和电荷转移性质预测的新范式。 基
于模式识别的高效算法不仅能够以传统计算 1/10
的成本预测分子电子结构， 还可实现光收集材料的
高通量筛选。通过图神经网络耦合密度泛函理论，实
现光诱导电荷转移路径预测精度提升 40%。 Ryan
等[38]基于深度神经网络构建晶体结构预测模型，通
过多视角原子指纹数据解析晶体拓扑结构， 实现化
学元素的精准区分与原子位点相似性识别。 模型基
于晶体环境特征训练，可自动提取与元素化学性质相
关的描述符，并揭示元素周期表趋势，如镧系元素、
碱金属的聚类规律。 Pun 等[81]将物理信息人工神经

网络势能模型，融合键序势物理框架与深度神经网

武雅洁，等：AI+时代材料基因工程与智能科学的研究进展与挑战《铸造技术》01/2026 7· ·



图 7 DeepH 模型核心思想：(a, b) 通过深度学习方法，利用局部结构信息来预测 DFT 哈密顿量，从而实现对材料性质的高效预
测[73]

Fig.7 Core idea of the DeepH model: (a, b) through deep learning methods, local structural information is used to predict the DFT
Hamiltonian, thereby achieving efficient prediction of material properties[73]

络，突破了传统机器学习势能模型物理可解释性差与
外推能力弱的瓶颈。 针对铝体系，基于原子密度/偶
极矩等局部参数构建 PINN 模型，在 DFT 数据集训
练下，能量预测均方根误差较纯神经网络降低40%，
原子力精度提升 30%，表面能预测误差±0.02 J/m2。
在材料表征分析方面，基于DFT和Tersoff-Hamann

方法，Choudhary等[82]创建了涵盖 716种可剥离二维
材料的计算 STM 图像数据库 JARVIS-STM， 通过
DFT系统生成原子级精度虚拟图像。 开发的卷积神
经网络模型实现布拉维晶格智能分类， 在 5类晶系
测试集中准确率达 90%， 成功解析 2H-MoS2 等 9
种实验样品晶格类型。JAVIS开源平台(https://jarvis.
nist.gov/jarvisstm)为二维材料界面电子态研究提供
了高精度基准与智能解析工具。 同样， 为解决核磁
共振光谱学中手动解析和验证结构的低效和易错问

题，Mestrelab 等[83]首创出能够用于热分析数据评估

与效应鉴别的工具 AIWizard。 它通过全局光谱去卷
积技术先预处理数据并自动编辑峰值列表， 然后结
合多种数据分析技术来分析表征结果， 该方法能够
高效处理复杂的核磁共振数据。 这种方法不仅显著
减少了人工干预的需求， 还通过综合分析多种数据
源提高了验证的效率和准确性， 为核磁共振光谱学
及其他领域的自动化分析提供了新的可能性。 在材
料科学中， 合金微观结构图像分割对于理解合金性
能至关重要， 而传统的监督学习算法和基于大模型
的微调方法都需要特定任务下的标注数据和额外训

练，这限制了其泛化能力和应用范围。为解决这一问
题，Ma 等[84]提出了一种结合分割模型 SAM 和领域
知识的合金微观结构图像分割方法， 无需额外训练
即可实现快速且准确的分割。 该方法不仅在分割精
度上与监督模型相当， 还具有良好的泛化能力和对
数据量的低依赖性， 为合金微观结构的定量分析提
供了新的思路和工具。
2.3 材料的性能优化
通过 ML算法，AI能够分析大量实验数据和模

拟结果，识别出影响材料性能的关键因素，并提出优
化方案。这不仅能够显著提高材料的力学、热学和电
学性能，还能对生产过程优化提出优化建议，降低成
本和提高效率。
在智能监测领域，Zhang 等 [85]通过集成卷积神

经网络与视觉变换器优势的 ConvNeXt 模型， 实现
了焊接缺陷 99.52%的高精度识别。并结合反向传播
神经网络 BPNNs建立了 “焊接参数-电弧几何-焊缝
厚度”的预测模型，使最大预测误差降低到 0.6 mm，
较原先降低了 25%。 整个技术体系形成“缺陷检测-
工艺优化-程序自生成”的智能闭环，显著提升了焊
接质量与效率，为智能焊接提供可靠的解决方案。在
算法优化和调参领域，Lin等[86]通过元学习与贝叶斯

优化以及学习历史数据集的建模经验， 开发了可自
动化选择算法和优化超参数的 Auto-MatRegressor
自动化建模方法， 彻底解放了材料科学家的调参负
担， 并且显著提高了材料科学研究中机器学习模型
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图 8 人工智能赋能不同时间-空间尺度材料性质的计算方法与软件[12]

Fig.8 Computational methods and software for material properties at different time-space scales empowered by artificial intelligence[12]

的构建效率和预测准确性， 进一步精准筛选出性能
优秀的材料。 在增材制造领域，传统的 3D打印技术
在制造个性化可穿戴设备和生物医学植入物时面临挑

战，尤其是在处理复杂、动态和非平面表面时，近年来
开发出原位 3D打印技术结合 AI感知系统，可实现动
态表面直接打印并通过实时感知与动态适应提升打印

精度。 AI驱动的原位打印技术通过环境状态预测与
自适应控制，为智能医疗制造提供“感知-决策-执
行”闭环解决方案，提升了 3D打印后材料的性能[87]。
并且 Gongora 等[88]集成了有限元分析与自主实验的

混合优化框架， 通过转移学习机制将数值仿真知识
迁移至实验领域，利用模拟数据作为先验知识，显著
减少了实验次数， 并通过贝叶斯优化算法加速了增
材制造结构力学性能的研究， 实现了增材制造力学
性能的高效优化。
在材料科学的演进历程中， 材料的结构-性能

关联解析、 多尺度表征优化及工艺设计始终是制约
研发效率的核心挑战。 AI技术应运而生适应了现代
工业对高性能材料快速迭代的需求。 综上所述，AI
技术的突破性发展为材料研究范式带来了根本性变

革，基于机器学习的数据挖掘能力，研究者可突破传
统试错法的局限， 从海量材料数据中提取跨尺度关
联规律。通过深度神经网络对表征数据的解析，不仅
实现了微观结构到宏观性能的精准映射， 更构建起
“合成工艺-结构特征-服役性能”的智能预测模型。
而强化学习算法的引入， 则使工艺参数优化从经验驱
动升级为数据驱动的闭环调控。 AI正通过不同的计

算方法与软件显著提升着材料的研发效率。 如图 8
所示[12]， 随着高通量计算技术的突破，MGE 通过整
合量子力学、分子动力学等多尺度理论方法，构建了
面向材料性能高效预测的模型、 算法与计算软件体
系。 能够实现材料热力学、动力学、导电导热特性以
及强度、疲劳等使役性能的预测，精准解析成分-
工艺-结构-性能的复杂映射关系，为新材料研发提
供跨尺度的理论支撑。 在原子尺度上，基于DFT的计
算工具，如维也纳从头计算模拟软件包(vienna ab-ini-
tio simulation package, VASP)[89]可解构材料的电子
结构与量子特性，揭示能带分布及化学键合机制。而
分子动力学模拟平台， 如大规模原子/分子并行模拟器
(large-scale atomic/molecular massively parallel sim-
ulator, LAMMPS)[90]则可以动态追踪原子运动规律，
捕捉相变、扩散等微观演化过程。动力学蒙特卡洛方
法则有效的衔接了原子与连续介质模型， 解析着表
面催化反应等随机过程。 相场法则聚焦于微观组织
演变，精准刻画晶界迁移、裂纹扩展等关键现象。 面
向宏观工程应用， 有限元分析等工具通过数值求解
材料在复杂载荷下的响应行为， 为工程优化提供量
化依据。 这种多尺度协同的计算范式不仅显著缩短
材料研发周期，更在航空航天装备、能源存储等前沿
领域推动着突破性创新， 彰显 AI驱动材料科学发展
的范式革新。
2.4 AI驱动的自动化实验室
在当今科技飞速发展的时代， 实验室作为科学

研究和技术创新的核心场所， 正经历着一场深刻的
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图 9 利用 A-Lab 进行自主材料发现，使用由 Materials Project 和 Google Deep Mind 的基态组成的 DFT 计算的凸包来识别空气
稳定的未报告目标。 利用文献中的合成数据训练的 ML模型，提出每个目标的合成配方。 再使用机器人实验室进行测试[91]

Fig.9 Autonomous materials discovery via A-Lab uses the convex hull calculated via DFT, which is composed of the ground states
from the Materials Project, and Google DeepMind to identify unreported air-stable targets. Synthesis recipes for each target are

proposed via an ML model trained with synthesis data from the literature. Then, tests were conducted in a robotic laboratory[91]

变革。传统实验室依赖于人工操作和手动记录，效率
低下且容易出现人为误差， 难以满足现代科学研究
对高通量、高精度和高效率的需求。 随着 AI技术的飞
速发展， 其在材料科学领域的应用已经从理论计算和
数据分析拓展到了实验环节。AI与自动化实验室的结
合， 正在成为材料研究领域的一个新兴且极具潜力的
方向。 该系统首先基于预定义的目标和条件，利用 AI
对实验数据进行分析和处理， 并为实验制定计划。 然
后，机器人进行相关的实验操作并采集数据，系统再次
对结果进行分析并调整实验方案。 这一过程以反馈循
环的方式持续进行，自动调节材料组成和制备工艺，以
探索性能更好的新材料。此外，人类专家还可以与平台
进行交互， 提供领域知识和经验， 指导实验方案的优
化。同时，系统还可以将实验结果和分析结论实时反馈
给研究人员，促进共同进步。 计算、实验和数据的协同
应用，进一步提升了实验系统的智能化水平。

Zhu等[70]设计出了首个 AI驱动的自动化化学家
系统 AI Chemist， 用于自动化合成和智能优化火星
矿石中的氧气进化反应催化剂。 该系统结合了机器人
自动化实验平台、机器学习与理论计算，能够从火星
矿石中快速筛选出最优催化剂配方。AIChemist通过
结合机器学习与贝叶斯优化，在 3×106级配方空间中
将发现最优合成公式的效率提高了五个数量级，相
比传统试错法大幅减少了实验次数。 合成的催化剂
在 10 mA/cm2的电流密度下运行超过 550 000 s，过
电位仅为 445.1 mV， 显示出优异的稳定性和性能。

此外， 该催化剂在模拟火星低温环境中也能稳定产
生氧气，证明了其在火星恶劣条件下也具有实际应用
的潜力。 这一成果为火星原位资源利用提供了新的
技术路径， 并为未来在其他星球上进行化学合成和
材料开发提供了重要的参考。
在新材料的发现过程中， 计算筛选和实验实现

之间存在巨大的速度差距。 尽管高通量计算能够快
速识别出有潜力的新材料， 但这些材料的实验合成
往往面临挑战，耗时且效率低下。 因此，A-Lab 固态
自主合成实验室[91]被设计出来，如图 9 所示，通过系
统集成计算、历史数据、机器学习和机器人自动化实
验，实现了无机粉末材料的高效合成。 在 17 天的运
行中，A-Lab 成功从 58 个目标材料中筛选并合成了
41 种新型化合物， 目标成功率达到 71%。 其利用
DFT 计算的相稳定性数据， 通过基于文献训练的
LLMs提出合成配方， 以及基于热力学的主动学习
来优化失败的合成方法。 该平台不仅显著加快了新
材料的发现速度，还通过实验反馈优化了计算预测，
为材料科学的发展提供了一个强大的工具。
为应对纳米材料合成的不可重复性、 低产率和

多分散性等问题， 以及寻找到具有特定形状和性能的
纳米材料的最优合成条件， 解决因合成条件的高维度
和敏感性而实验效率低下等问题。 AI-EDISON自主
化学合成机器人系统 [92]应运而生，实现了金纳米颗
粒多步合成的自主优化。 如图 10 所示 [92]，AI-EDI-
SON集成实时光谱分析与机器学习算法，系统通过
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质量多样性算法探索高维化学空间， 结合紫外可见
光谱反馈调控反应参数，在千次实验内发现了球形、

星形等 5类纳米结构。
针对多目标优化过程中目标之间相互冲突问

图 10 AI-EDISON平台的设计和工作原理：(a)以金纳米颗粒(AuNPs)为例，展示了 3 个层次链接的化学合成空间在种子介导合
成中的示意图；(b)探索(蓝色循环)和优化(红色循环)的闭环方法；(c)闭环的 3 个步骤：合成、分析以及通过算法设计新实验；
(d, e)由日内瓦轮驱动的化学反应模块的 CAD设计和实验设置，该模块包含液体分配、pH 控制和溶液转移的单元；(f)整个自

主平台的整体设置，包括温度控制器、储备溶液、泵、化学反应模块、流动池、光源和光谱仪[92]

Fig.10 Design and working principle of the AI-EDISON platform: (a) taking gold nanoparticles (AuNPs) as an example, a schematic
diagram of the three-level linked chemical synthesis space in seed-mediated synthesis; (b) closed-loop method for exploration (blue
cycle) and optimization (red cycle); (c) three steps of the closed loop: synthesis, analysis, and design of new experiments through

algorithms; (d, e) CAD design and experimental setup of a chemical reaction module driven by a Geneva wheel, which contains units
for liquid dispensing, pH control, and solution transfer; (f) overall setup of the entire autonomous platform, including a temperature

controller, stock solutions, pumps, a chemical reaction module, a flow cell, a light source, and a spectrometer[92]
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题，自主驱动实验室 Ada[93]通过 2 个机器人实现了
金属薄膜导电性与加工温度的有效权衡以及从制备

到表征的全流程自动化。 结合自动化实验和 AI 算
法，通过灵活操控多种实验变量，成功绘制了钯薄膜
导电性和加工温度之间的帕累托前沿， 并发现新的
合成条件， 使得在低于 200℃的温度下就能制备出
金属薄膜，显著低于传统方法的 250℃。 此外，Ada
的发现被转化为一种可扩展的喷雾涂层工艺， 能够
在大面积基底上制备出均匀且导电性高的钯薄膜，
这一成果不仅提高了实验效率， 还有助于加速材料
从实验室到工业应用的转化。
深圳社会人工智能与机器人研究所基于智能云

实验室平台 [94]通过融合实验室自动化、云计算与人
工智能技术，实现了无机钙钛矿纳米晶体光学活性的
自主发现与机制解析。 系统集成自动化合成装置与光
谱表征模块， 采用稳定噪声优化算法在 250次实验
循环内完成反应温度与前驱体浓度的参数寻优， 成功
制备出具有温度依赖性圆二色性信号的手性晶体。 多
智能体驱动的机器人 AI化学家系统 ChemAgents[95]，
基于 LLMs，实现了从文献挖掘到实验设计、计算模拟
和机器人操作的全流程自动化。 系统通过任务管理
器和 4个角色特定的智能体协作， 高效筛选和优化
实验条件，加速了功能性材料的发现。
自动化实验室通过引入先进的 AI技术、智能控

制系统和数据分析平台，实现了实验流程的自动化、
标准化和智能化，极大地提高了实验效率、数据质量
和科研创新能力。 这种结合不仅能够加速材料的发
现和优化过程，还能提高实验的效率和准确性，为材
料科学的发展带来前所未有的机遇。

3 结论与展望
人工智能技术的快速发展正深刻变革材料科学

的研究范式。 通过 ML、DL及 NLP等技术，AI已贯
穿材料研发全链条，从材料的逆向设计与筛选、物性
预测与表征分析，到性能优化与自动化实验实施，逐
步实现从“试错迭代”向“预测设计”的范式跃迁。 然
而，AI与材料科学的融合仍面临三重核心挑战。

(1)在技术层面上，需提升 AI 算法的准确性和
鲁棒性以应对复杂的多尺度问题及不确定性， 例如
开发融合物理定律的模型(如物理信息神经网络)并
结合强化学习与仿真工具以增强模型的泛化能力。

(2)在数据管理方面，急需高效收集、安全存储
和协同共享海量的实验数据， 重点在于构建标准化
云平台数据库， 可利用区块链技术确保数据的完整
性与访问控制， 以及部署智能传感器和物联网设备

以实现数据的自动化采集。
(3)针对跨学科人才短缺问题，高校应推动设立

“材料信息学”交叉课程，企业参与提供联合培训与
实习项目， 以及建立产学研联盟以培养精通 AI 与
材料实验的复合型人才并加速知识转移， 从而系统
化推动 AI 在材料科学中的可靠应用与创新突破。
通过持续的技术创新和跨学科合作， 有望突破材料
性能极限，发现更多具有突破性功能的新材料，推动
材料科学迈向一个新高度。
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