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摘 要：针对钢铁行业能源消耗大、能源管理效率低的问题，设计并开发了一种面向生产现场的能源介质优化系

统。 系统集成了能源数据采集、实时监测、智能分析与优化控制等多项功能，涵盖转炉、LF精炼等关键工序，致力于提升
能源利用效率、降低能耗并支撑企业绿色低碳转型。 构建了基于遗传算法优化的随机森林回归模型，通过挖掘废钢量、

炉龄等 12 项工艺参数的非线性关联， 提升了转炉氧气消耗预测精度， 氧气消耗降低 1.3%； 引入了面向 LF 精炼的
LSTM温度预测模型，使钢液温度预测误差控制在±5℃，并据此优化供电策略，实现电耗降低 1.5%。
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Abstract： To address the issues of high energy consumption and low energy management efficiency in the steel industry,
an onsite energy medium optimization system was designed and developed. The system integrates multiple functions,
including energy data acquisition, real-time monitoring, intelligent analysis, and optimized control, covering key processes
such as converters and LF refinement, with the aim of improving energy utilization efficiency, reducing energy
consumption, and supporting green and low-carbon transformation in enterprises. A random forest regression model
optimized by a genetic algorithm was constructed, which enhanced the prediction accuracy of oxygen consumption in
converters by analysing the nonlinear relationships among 12 process parameters, such as scrap steel quantity and furnace
age, resulting in a 1.3% reduction in oxygen consumption. For LF refining, an LSTM-based temperature prediction model
was introduced, achieving a prediction error of ±5 ℃ for the molten steel temperature, which enabled the optimization of
power supply strategies and reduced electricity consumption by 1.5%.
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钢铁工业作为我国工业体系的重要组成部分，
具有重要的经济和社会价值。 然而， 钢铁行业的能源
消耗在工业总能耗中占据了较大比例。 我国钢铁行
业能源消耗量，约占全国能源消耗总量的 12.6%，且
在全球范围内，其能源消耗效率普遍较低，给企业
带来了高昂的生产成本和巨大的环保压力[1-3]。 据统

计， 我国钢铁产业的吨钢综合能耗约为 550 kgce/t，
高于发达国家 15%~20%，相比之下，在能源利用效
率方面我国钢铁生产仍存在较大差距， 导致资源浪
费严重，对环境造成了较大压力[4-5]。 在此背景下，如
何在提升钢铁生产能力和产品质量的同时， 有效降
低能源消耗与碳排放， 推动绿色低碳技术的广泛应
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图 1 系统架构
Fig.1 System architecture

用，已成为钢铁行业亟需解决的关键问题 [6-7]。 为实
现该目标，近年来诸多研究者致力于对炼钢各环节
工艺参数进行优化以提升能效。 例如，张垚等[8]通过

优化转炉高废钢比工艺中的氧枪喷头参数， 采用 4
孔喷头结构，有效改善了吹氧时间、氧气与钢铁料
消耗，显著提升了转炉工艺的技术经济指标；贾国
翔等 [9]对 LF 炉造渣工艺进行优化，提升了脱硫效
率，缩短了精炼周期，降低了铝耗、灰耗与电耗，增
强了环保效益。 此外，随着计算机模拟、优化算法与
大数据技术的不断进步，钢铁生产正逐步向智能化
与精细化方向发展。Kong等[10]基于粒子群优化算法

(particle swarm optimization, PSO) 建立了转炉氧气
调度模型，有效减少了氧气消耗波动，提升了氧气
利用效率，实现了炼钢过程的节能降耗；Shi 等 [11]则

提出结合小波变换和加权算法优化的双支持向量

机模型，用于 LF炉端点温度与碳含量的精准预测，
预测误差控制在±5%和±10%以内，显著提升了预测
精度。 综上所述，尽管目前在炼钢节能降耗方面已
取得一定研究成果，但大多仍集中在传统工艺参数
优化层面，针对人工智能算法与先进数据驱动方法
的系统集成研究仍较为有限。 未来，应进一步加强
智能优化算法在炼钢节能过程中的应用研究，以推
动钢铁工业高效、绿色与智能化发展。
基于此，本文结合钢铁企业典型工艺流程及其

能源消耗特性，设计并开发了一套面向关键用能单
元的能源介质优化系统。 该系统以转炉、LF炉等核
心工序为对象，分别构建了基于目标函数驱动的原
料配比优化模型和基于长短期记忆网络 (long
short-term memory, LSTM)的钢液温度预测模型，旨
在提升能源利用效率与操作决策的智能化水平 [12]。
并验证其在氧气消耗、 电能消耗等关键指标上的
表现。

1 基于炼钢区域能源介质优化系统概述
能源介质优化系统是一种集成了数据采集、分

析、优化与监控等功能的智能化系统，专门用于提升
能源利用效率， 尤其适用于像钢铁行业这样能源消
耗巨大的工业领域。该系统通过实时监控、数据采集
与分析，为企业提供精准的能源使用情况，帮助企业
优化能源配置、降低能耗、提高经济效益，同时推动
企业实现绿色低碳转型。
1.1 系统组成
该能源介质优化系统主要由能源介质数据管理

模块、 能源介质在线智能优化模块以及能源指标评
价模块等组成。首先，系统对当前炼钢生产过程中的
能源管理现状及能耗分布进行全面调研， 以识别和
分析制约现有能源管理水平提升的关键环节。随后，
基于现有的能源状况， 系统规划能源介质监测数据
的采集和存储机制，实现对水、电、煤气等主要能源
介质的实时在线监测，在此基础上，通过收集的数据，
进行能源消耗量分析与优化，为决策提供数据支持。
最后，系统根据在线监测结果，实施能源产耗的

动态监控与预警机制，进一步提升能源管理水平。通
过这一系列措施 ，系统旨在优化能源结构 ，减少
能源损耗， 实现节能降本的目标， 具体架构如图 1
所示。
1.2 核心功能
能源介质优化系统通过在关键生产环节部署传

感器及数据采集设备， 实时获取钢铁生产过程中各
类能源消耗数据，涵盖电力、天然气、水资源等多种
能源的使用情况。 系统实时反馈能源的使用状况，可
帮助企业及时发现能源浪费和异常情况， 从而确保
生产过程中的能源管理更加精准高效， 其核心功能
包括转炉模块、LF精炼模块、预警模块及数据中心。
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图 2 转炉模块界面
Fig.2 Converter module interface

(1)转炉模块 该模块界面中部为数据输入与
模型执行区，用户可在此设定钢种代号、铁水成分
及目标成分参数。 系统支持对 C、Si、Mn、P、S、Cr、
Cu、Mo、Ti 等关键元素的目标含量进行设定， 并以
表格形式呈现其设定值与推荐范围，便于用户对目
标成分的精细控制与可视化调整。
系统集成了面向氧耗优化的决策算法，通过对

输入参数与目标成分之间的非线性耦合关系进行

建模，建立关键原料组成与炼钢成分控制之间的映射
关系。 在此基础上，系统通过“模型决策”功能按钮
触发优化过程，完成原料配比计算，输出在满足冶
金工艺约束条件下的最优成分组合与工艺参数。
界面右侧为“决策结果”展示区，以列表形式输

出白云石、增碳剂、废钢、低碳锰铁等关键原料的推
荐用量。 通过在优化过程中引入氧耗最小化目标函
数， 该模块有效降低冶炼过程中的单位氧气消耗，
为炼钢过程的节能降耗提供了数据支撑和决策参

考。 整体设计实现了从参数设定到优化结果输出的
闭环控制流程，显著提升了操作效率与决策智能水
平，如图 2所示。

(2)LF炉模块 该模块主要用于钢液温度的实
时监测与短期预测。 界面采用左右双图布局，左侧为
LF炉钢液的历史温度变化曲线，右侧为未来 10 min
温度预测曲线， 便于操作人员进行温控判断和干
预。 图表下方为模型输入参数区，用户可输入钢种、
计划耗时、吹氩计划等关键参数。 点击“模型决策”
按钮后，系统将基于输入数调用预测模型，输出相
应的供电建议。 右下角为“决策结果信息输出”，展
示模型生成的控制建议，如图 3所示。

(3)智能预警 通过设定能耗阈值和预警机制，

当某些关键指标超出正常范围时， 系统会及时发出
报警，提醒操作人员采取必要的纠正措施。这一智能
预警机制能够有效避免能源浪费和设备故障， 从而
减少企业在能源消耗方面的经济损失， 能源预警界
面如图 4所示。
最后，数据中心通过对长期积累的数据记录，系

统能够生成详细的能源使用报告， 全面分析企业在
能源利用过程中存在的问题， 并提出切实可行的改
进建议。 这些报告不仅为企业提供了精准的能源管理
依据， 也为政策制定者和企业管理层提供了科学的
决策支持，帮助其做出更加合理的能源管理决策。

2 系统设计
能源介质优化系统的设计方案旨在通过现代信

息技术、物联网技术、人工智能和大数据分析，实现
对钢铁企业生产过程中的能源使用进行精确监测、
分析和优化管理。 系统的核心目标是帮助企业降低能
源消耗，提高能源使用效率，并推动绿色低碳转型。
2.1 模型构建
2.1.1 转炉氧气优化模型构建
随机森林回归算法是一种基于集成学习的非线

性建模方法，适用于处理高维、复杂变量间存在非线
性交互的问题[13]。 本文将其应用于氧气消耗量的预
测建模中， 通过构建多棵决策树并加权平均预测结
果，有效提升了模型的稳定性与精度 [14-15]。 由于冶炼
过程中的复杂性和非线性关系， 随机森林算法利用
随机抽样构建多棵决策树， 每棵决策树通过从训练
数据和特征子集中随机选择部分样本进行训练，捕
捉行为特征之间的非线性关系， 并预测在不同操作
条件下的氧气消耗量。
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表 1 展示了多个冶炼工艺参数与单位氧气消
耗量之间的非线性相关性分析结果，其中相关性系
数来源于基于非线性特征评估方法的计算结果，反
映了各变量对氧气消耗变化趋势的综合影响程度。
结果显示，废钢量在所有特征中与氧气消耗量表现
出最高的特征重要性系数达到 0.15，表明废钢比例
的变化会在冶炼过程中显著影响氧气消耗量水平，
对模型预测结果的贡献度达到 15%。 同时，该结果
也验证了在复杂工业系统中采用非线性方法进行

变量评估的必要性。
如图 5 所示，通过对比能够直观地展示随机森

林算法回归模型在氧气消耗量预测中的表现，证明
其在处理复杂非线性关系中的可行性和有效性。
为进一步优化特征选择并提升预测效果，引入

遗传算法对特征子集进行全局搜索优化。 该算法通
过模拟自然选择和进化机制，实现了冗余特征的剔

除与关键变量的提取。 表 2展示了多个冶炼过程变
量在氧气消耗量预测中的非线性相关性系数及其基

图 4 预警模块界面
Fig.4 Interface of the early warning module

图 3 LF精炼模块界面
Fig.3 LF refining module interface

表1 非线性相关分析结果
Tab.1 Results of nonlinear correlation analysis

Feature Importance of features

Consumption of dolomite 0.13

Lime in front of the furnace 0.03

Refining slag 0.02

Molten iron 0.14

Furnace age 0.08

Lance life 0.08

Slag blocking situation 0.03

Low-carbon ferromanganese 0.08

Tap-to-tap cycle 0.09

Quantity of scrap steel 0.15

Carbon raiser 0.09

Converter size 0.08
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于遗传算法优化过程中的特征选择概率。 相关性系
数用于衡量各变量与氧气消耗量目标之间的非线

性依赖强度，而选择概率则反映了特征在遗传算法
迭代过程中被纳入最优特征组合的频次，能够更全
面地揭示特征在预测建模中的实际贡献度。

2.1.2 LF炉供电优化模型构建
在进行 LF精炼供电优化模型构建之前， 先对

原始生产数据进行系统性处理与分析。 首先对收集
到的精炼过程数据进行了全面的预处理，包括数据
清洗和归一化操作， 以确保数据的质量和一致性。
数据清洗过程中，处理了异常值和重复数据，以消
除潜在的噪声和错误数据， 保证输入数据的准确
性 [16]。 而数据归一化则通过将不同特征的数据转换
到统一的尺度范围，避免了不同数据维度间的量纲
差异对后续建模产生不良影响，确保模型训练时的
稳定性和有效性。
在数据预处理完成后，采用了 LSTM 网络来进

行模型训练。 LSTM是一种适用于处理时间序列数

据的深度学习算法， 能够有效捕捉时间序列中的长
期依赖关系和复杂的时序模式[17]。精炼过程中，钢液
温度的变化随着时间的推移呈现出一定的规律性，
这种规律性在不同的生产条件下也保持了一定的稳

定性。 因此，利用 LSTM 模型能够深入挖掘这些规
律，从而预测钢液温度的未来变化趋势[18]。
与此同时， 笔者还特别关注了精炼过程中从坐

包到吊包钢液温度的变化数据， 这一时间序列数据
蕴含了精炼过程的动态特征。 通过 LSTM模型的训
练，系统能够学习到该过程中的时间依赖性，并基于
历史数据预测未来时刻的钢液温度变化， 从而为精
炼过程的实时温度调控和优化决策提供精准的支

持，模型参数表如表 3所示。
如图 6所示， 表明预测值与真实值之间的误差

较小，且大部分预测值与真实值之间的误差较小。预
测误差在±5℃以内的命中率达到 87.5%，满足工业
生产控制需求，显示出 LSTM 模型在钢液温度预测
中的较高准确性和稳定性。

基于该模型的预测结果， 生产过程中钢水温度
的变化趋势可被提前准确掌握， 为操作人员预留了
充足的响应时间以实施相应的节能调控措施。 进一
步地， 系统可依据不同的升温模式对未来能耗水平
进行判别，若预测结果为高能耗升温趋势，系统可及
时发出预警，指导操作人员调整供电策略，优化加热
路径，以实现 LF精炼的耗电优化。
2.2 系统网络架构
智能传感器与数据采集设备首先需要选择高精

度、高可靠性的智能传感器，用于在生产现场各个环
节实时监测能源消耗数据采集[19]。 这些传感器能够

图 5 真实值与预测值对比
Fig.5 Comparison of true and predicted values

图 6 预测值与真实值对比
Fig.6 Comparison between the predicted values and the true

values

表2 遗传算法选择的特征子集
Tab.2 Subset of features selected by the genetic algorithm

Feature
Correlation coefficient

(non-linear)
Selection
probability

Consumption of dolomite 0.13 0.68

Molten iron 0.14 0.78

Furnace age 0.08 0.63

Lance life 0.08 0.65

Low-carbon ferromanganese 0.08 0.71

Tap-to-tap cycle 0.09 0.65

Quantity of scrap steel 0.15 0.80

Carbon raiser 0.09 0.75

Converter size 0.08 0.73

表3 模型参数
Tab.3 Model parameters

Parameter
LSTM layer1
number of units

LSTM layer2
number of units

Dense layer1
number of units

Dense layer2
number of units

Batch size
Number of

training epochs

Value 50 50 25 1 64 100
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图 7 网络架构图
Fig.7 Network architecture

表4 氧气消耗量优化项目及优化结果
Tab.4 Optimization projects and results of oxygen consumption

Project
Usage of dolomite

/kg
Amount of carbon
additive used/kg

Scrap steel loading
volume/t

Low carbon manganese
iron usage/kg

Oxygen consumption
/(N·m3)

Before optimization 22.4 30.2 25.6 412.5 3 425

After optimization 22.1 27.5 25.3 408.3 3 381

准确采集各种能源使用情况，并将数据传输至数据
平台。 选择的传感器必须具备高灵敏度、抗干扰能
力和长寿命，以确保数据的准确性与系统的稳定性。
数据传输网络要求建设一个高效稳定的数据传

输网络，用于传输来自不同监测点的数据。 可根据
生产现场的实际需求，选择建设工业以太网、无线网
络或光纤通信等，传输网络必须保证低延迟、高带
宽，确保数据能够及时上传至云平台进行处理。
数据存储与处理平台选择高性能的云计算平台

作为数据存储与处理中心。 通过云平台的分布式存
储和计算架构，确保海量能源数据的高效存储与快
速处理。 此外，平台将支持对历史数据进行长期存
储，便于后续的趋势分析与决策支持。
用户终端与控制界面通过为管理人员提供可视

化的用户界面，用户界面具备直观的图形展示功能，
能够实时显示各个生产环节的能源消耗情况，并提
供报警功能，以便快速响应异常情况，具体网络架构
设计如图 7所示。

3 工业适用性及优化效果分析
能源介质优化系统作为一种高效的能源管理工

具，具有较高的技术成熟度和可操作性。 在钢铁行
业推广应用这一技术方案，不仅可以有效提升能源
利用效率，还能为企业带来显著的经济效益，并对环

境产生积极影响。
3.1 技术成熟度
能源介质优化系统基于物联网、大数据分析、人

工智能等成熟技术， 已有不少成功应用案例和研发
成果[20-21]。 这些技术已经在其他工业领域，特别是能
源密集型行业中得到广泛应用。 例如， 智能传感器
和数据采集设备在许多工厂中已被广泛部署， 数据
传输和云计算技术也已经过多次验证， 具备高效稳
定的数据处理能力。 而人工智能和大数据分析技术
的应用，也不断取得进展，能够精准识别能源浪费和
优化生产流程[22-23]。
此外，系统设计充分考虑到钢铁行业的特殊性，

具备了处理复杂生产环境和大规模数据的能力。 通
过成熟的技术架构和前期多次测试， 系统已具备较
高的稳定性和可靠性，可以适应钢铁企业高负荷、复
杂多变的生产环境。
3.2 优化效果
能源介质优化系统展现出良好的经济性与环境

友好性，体现在以下方面。
(1)转炉优化 如表 4 所示，经过遗传算法优化

后的模型在降低氧气消耗方面表现出了较好的改

进。 优化后的模型氧气消耗量相比未优化模型平均
减少了约 1.3%。这一优化效果在不同炉次中得到了
充分验证， 表明遗传算法在特征选择和优化方面具
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有显著优势，能有效减少冶炼过程中的能源消耗。
(2)LF 炉优化 模型能够根据升温速率预测的

变化识别不合理的升温模式并及时进行调整， 有效
避免了过度升温导热量浪费现象， 优化了生产过程
的能效。 为了验证模型的有效性，选取了 10 min 内
的波动型升温作为测试场景进行供电优化， 如图 8
所示。 优化策略相较于正常供电策略在电力供应管
理上显著提高了效率。具体而言，优化策略在多个时
间节点实现了更合理的电力水平， 从而在一定程度
上增强了系统的稳定性， 并提高了电力分配的整体
效率。 通过对比模型预测结果与传统方法的能耗数
据，结果表明，LF 炉整体电耗降低了约 1.5%，提高
了能效并减少了能源浪费。

综合来看， 能源介质优化系统具备较高的技术
成熟度， 能够为钢铁行业带来显著的经济效益和节
能效果。 该系统不仅符合国家对钢铁行业绿色低碳
转型的政策要求，还能够推动企业实现高效、智能化
的能源管理，提升企业的整体竞争力，助力钢铁行业
实现可持续发展。

4 结论
(1)转炉模块能够实现平均氧耗降低 1.3%，LF

炉模块通过升温模式的识别与调控使电耗降低

1.5%。
(2)通过将 LSTM神经网络应用于钢液温度预测，

系统实现了±5℃精度内 87.5%的预测准确率，满足
工业控制需求， 为实际生产调控提供了可靠的数据
支持与决策依据。

(3)系统通过智能预警机制提升了能源管理的
响应速度与可靠性， 有效规避了能源浪费和异常工
况带来的生产风险， 显著增强了钢铁企业的节能减
排能力与绿色转型水平。
本文构建的能源介质优化系统具备良好的工程

适应性、运行稳定性及推广应用价值，能够为钢铁行

业实现智能化、绿色化升级提供技术支撑。 未来，随
着模型算法的进一步优化与工业现场数据的不断积

累， 该系统在工业过程能效管理中的应用范围有望
进一步拓展， 助力钢铁行业实现高质量与可持续发
展目标。
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