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Abstract: To address the issues of high energy consumption and low energy management efficiency in the steel industry,
an onsite energy medium optimization system was designed and developed. The system integrates multiple functions,
including energy data acquisition, real-time monitoring, intelligent analysis, and optimized control, covering key processes
such as converters and LF refinement, with the aim of improving energy utilization efficiency, reducing energy
consumption, and supporting green and low-carbon transformation in enterprises. A random forest regression model
optimized by a genetic algorithm was constructed, which enhanced the prediction accuracy of oxygen consumption in
converters by analysing the nonlinear relationships among 12 process parameters, such as scrap steel quantity and furnace
age, resulting in a 1.3% reduction in oxygen consumption. For LF refining, an LSTM-based temperature prediction model
was introduced, achieving a prediction error of +5 “C for the molten steel temperature, which enabled the optimization of
power supply strategies and reduced electricity consumption by 1.5%.
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Fig.1 System architecture
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Fig.2 Converter module interface
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Fig.3 LF refining module interface
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Fig.4 Interface of the early warning module
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’ Tab.1 Results of nonlinear correlation analysis
’ Feature Importance of features
o Consumption of dolomite 0.13
s Lime in front of the furnace 0.03
0.15, Refining slag 0.02
Molten iron 0.14
’ Furnace age 0.08
15%. , .
Lance life 0.08
Slag blocking situation 0.03
° Low-carbon ferromanganese 0.08
5 s Tap-to-tap cycle 0.09
, Quantity of scrap steel 0.15
Carbon raiser 0.09
’ Converter size 0.08
s
o 2
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Tab.2 Subset of features selected by the genetic algorithm
o
Correlation coefficient  Selection
Feature
(non-linear) probability
Consumption of dolomite 0.13 0.68
Molten iron 0.14 0.78
Furnace age 0.08 0.63
Lance life 0.08 0.65
Low-carbon ferromanganese 0.08 0.71
Tap-to-tap cycle 0.09 0.65
Quantity of scrap steel 0.15 0.80
Carbon raiser 0.09 0.75
Converter size 0.08 0.73 6
2.1.2 LF Fig.6 Comparison between the predicted values and the true
LF ’ values
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Tab.3 Model parameters
LSTM layerl LSTM layer2 Dense layerl Dense layer2 ) Number of
Parameter ) . . ) Batch size o
number of units number of units number of units number of units training epochs
Value 50 50 25 1 64 100
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Fig.7 Network architecture
4

Tab.4 Optimization projects and results of oxygen consumption

Project Usage of dolomite Amount of carbon Scrap steel loading ~ Low carbon manganese ~ Oxygen consumption
/kg additive used/kg volume/t iron usage/kg /(N-m®)
Before optimization 22.4 30.2 25.6 412.5 3425
After optimization 22.1 27.5 253 408.3 3381
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Fig.8 Optimization of the power supply strategy
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