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Abstract: Large-scale thin-walled variable-section ZTA1S5 titanium alloy castings hold significant application potential in
the manufacture of complex, variable-section nozzle components for aeroengines. However, the casting process is highly
sensitive to wall thickness parameters, leading to issues such as uneven mold filling, imbalanced temperature distributions,
and solidification defects. ProCAST software was employed to conduct numerical simulations of the pouring and filling
process, temperature field, velocity field, and solidification behavior of ZTA1S5 titanium alloy castings with different wall
thicknesses (i.e., 2.0, 3.5, and 8.0 mm). The results reveal that the 2.0 mm thick-walled castings exhibit excessive filling
velocity, resulting in vortex and porosity defects. The 8.0 mm thick-walled castings experience prolonged solidification
time, increasing the risk of shrinkage cavities. In contrast, the 3.5 mm wall thickness yields a uniform temperature field and
a reasonable solidification sequence, with initial cooling occurring at the cross-shaped runner and the first layer of
reinforcing ribs, followed by accelerated cooling of the large flat thin-walled surface in the later stages. Shrinkage porosity
and cavities are observed across all wall thicknesses, primarily concentrated at the junction of the central sprue and the
cross-shaped runner, as well as in the thicker regions near the reinforcing ribs. These defects are attributed to localized
variations in cooling rates, leading to thermal stress concentration. No significant isolated liquid phase regions are found on
the large flat thin-walled surfaces, indicating that optimizing the pouring velocity and time can effectively mitigate defects.
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Tab.1 Chemical composition of the casting
(mass fraction/%)
Element Al A\ Mo Zr Ti Fe Si C N H O
Content 6.60 232 1.84 2.36 Bal. 0.14 0.32 0.008 0.005 0.001 0.11
1 :(a) ;(b)

Fig.1 Elliptical variable-section cylindrical: (a) macroscopic photograph of the casting, (b) schematic diagram of the partitioned
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Fig.2 Thermal conductivity of the cast titanium alloy and its mold shell: (a) ZTA15 titanium alloy; (b) Y,0; ceramic shell
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Fig.3 Variation in the physical properties of the ZTA15 titanium alloy with respect to temperature: (a) density; (b) viscosity
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Fig.4 Variation in the physical properties of the ZTA1S5 titanium alloy with respect to temperature: (a) crystallization enthalpy; (b) solid
fraction
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Fig.5 Contour plot of the simulation for the 3.5 mm wall-thickness model
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Fig.6 Temperature field during the filling process of the casting with a 3.5 mm wall-thickness model: (a) t=3.0 s; (b) t=6.0 s;
(c) 1=9.0 s; (d) =15.0's; (¢) 1=25.0's; (f) =35.0 s
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Fig.7 Velocity field during the filling process of the casting with a 3.5 mm wall-thickness model: (a) /=2.0 s; (b) t=4.0 s; (c) t=6.0 s;
(d)=8.0's
8 3.5 mm :(a) 4.0%; (b) 8.2%; (c) 24.2%; (d) 42.9%

Fig.8 Solid fraction evolution during the solidification process of the casting with a 3.5 mm wall-thickness model: (a) 4.0%; (b) 8.2%;
(c) 24.2%; (d) 42.9%
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Fig.9 Shrinkage porosity distribution in the casting with a 3.5 mm wall-thickness model: (a) 3D view; (b) X-Y section; (c) X-Z section
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Fig.10 Filling process and post-filling temperature distribution of castings with different wall thicknesses: (a,~a,) 2.0 mm wall
thickness; (b,~b,) 3.5 mm wall thickness; (c,~c,) 8.0 mm wall thickness; the numbers in the figure indicate the fraction of solid
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Fig.11 Velocity field during the filling process of castings with different wall thicknesses from 2.0 to 8.0 s: (a;~a,) 2.0 mm wall
thickness; (b,~b,) 3.5 mm wall thickness; (c,~c,) 8 mm wall thickness
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Fig.12 Solidification process of castings with different wall thicknesses: (a,~a,) 2.0 mm wall thickness; (b;~b,) 3.5 mm wall thickness;
(ci~c4) 8.0 mm wall thickness; the numbers in the figure indicate the fraction of solid
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Fig.13 Distribution of shrinkage porosity in castings with different wall thicknesses: (a) 2.0 mm wall thickness; (b) 3.5 mm wall
thickness; (c) 8.0 mm wall thickness
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