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摘 要：采用厚度为 10 μm Fe78Si9B13非晶条带和 2.7 μm 零价铁粉作为去除水体中重金属离子 Zn(II) 的反应材料，
对比研究去除水体中重金属离子的去除效果。 结果表明 ，800 min 之后 Fe78Si9B13 非晶条带的去除率达到 27.44%，

溶液浓度升高，去除率上升到 36.25%，溶液温度由 298 K 升高到 318 K，去除率达到 59.88%，去除机理主要是吸附和共

沉淀。
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Abstract： Fe78Si9B13 amorphous ribbons with thicknesses of 10 μm and 2.7 μm zero-valent iron powder were used as
reaction materials to remove the heavy metal ion Zn(II) from water. The removal effects of heavy metal ions in water were
compared and studied. The experimental results show that the removal rate of the Fe78Si9B13 amorphous ribbon reaches
27.44% after 800 min. When the solution concentration increases, this rate increases to 36.25% . As the solution
temperature increases from 298 to 318 K, the removal rate further increases to 59.88%. The removal mechanism is mainly
adsorption and coprecipitation.
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工业废水中的锌对鱼类及水生生物的毒性远

高于人类，其在土壤中富集会导致土壤失活，抑制
农作物生长 [1-3]。 鉴于锌污染的严重性，我国规定饮
用水中的锌含量不得超过 1.0 mg/L[4]。 因此，有效去
除工业废水中的锌，兼具净化水体与回收有价金属
的双重意义。 目前，重金属废水的处理技术主要包
括化学沉淀[5]、吸附、离子交换和膜分离等[6]。 具体而
言，研究者们已开发了多种方法，如使用合成重金
属捕捉剂[7]、生物质吸附剂[8]及二维纳米材料[9]等。特

别值得注意的是，李金琪[10]、杜金英等[11]发现Fe78Si9B13

非晶合金能有效去除 Cu(Ⅱ)和 Ni(Ⅱ)，其机理主要
涉及离子交换与吸附 [12-13]。 然而，Zn(Ⅱ)的标准电
极电位(E0(Zn2+/Zn)=-0.763 V)低于 Fe(Ⅱ) (E0(Fe2+/Fe)
=-0.44 V)[14]，从热力学角度看，单质铁难以通过还原
反应直接去除 Zn(Ⅱ)。 为了探究 Fe78Si9B13非晶合金

在处理 Zn(Ⅱ)时所具备的优越性及其主导去除机理，
本研究系统评估了 Fe78Si9B非晶合金对 Zn(Ⅱ)的净
化性能与作用机制。
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2.2 Fe78Si9B13非晶条带去除 Zn(Ⅱ)的效率
为了探究 Fe78Si9B13 非晶条带对 Zn(Ⅱ)的去除

机理和效率，以零价铁作为对比材料，在 298 K时将
1.00 mm×1.00 mm×0.03 mm Fe78Si9B13 非晶条带和

2.7 μm 铁粉分别投入到 1 000 mg/L 的 Zn(Ⅱ)溶液
中，Zn(Ⅱ)浓度随时间变化曲线如图 2所示。从图中
可以看出，Fe78Si9B13复合非晶条带刚开始以较快的

速率去除水体中的 Zn(Ⅱ)离子，300 min 后反应速
率减慢，趋于平缓。零价 Fe刚开始反应速率非常低，
到 400 min 之后反应速率加快，750 min 之内， 反应
速率可通过下式计算获得：

α=(C0-Ct）/C0×100% (1)
式中，α 为去除率，%；C0为 Zn(Ⅱ)溶液的初始浓度，
mg/L；Ct为不同反应时间下 Zn(Ⅱ)的剩余浓度，mg/L。

由此可知，当 Fe78Si9B13非晶条带对 Zn(Ⅱ)的去除率
达到 27.44%时，2.7 μm铁粉仅有 13%。 考虑到两种
材料的比表面积，1.00mm×1.00mm×0.03mm Fe78Si9B13

图 2 Fe 粉和 Fe78Si9B13去除 Zn(II)的速率
Fig.2 Removal rates of Zn(II) by the Fe powder and Fe78Si9B13

图 1 10 μm Fe78Si9B13非晶条带 XRD 谱和 SEM像：(a) XRD 谱；(b) SEM像
Fig.1 XRD pattern and SEM image of 10 μm Fe78Si9B13 amorphous strips: (a) XRD pattern; (b) SEM image

Fe78Si9B13非晶合金含有近 80%的 Fe，并且非晶
态合金处于亚稳定状态 [15]，反应所需要的活性能更
低[16]。 本文采用 Fe78Si9B13非晶条带作为反应材料与

传统的零价铁粉相比，发现非晶合金具有长程无序
的原子结构、 大量的活性位点以及更强的反应活性，
这为开发高效、稳定的水处理材料提供了新的思路。

1 实验材料及方法
实验所用的 0.03 mm Fe78Si9B13 复合非晶条带

由北京冶科科技股份有限公司提供， 选择中冶鑫盾
合金校企科研提供的高纯度超细铁粉(含铁量大于
99.999 9%)，将条带裁剪成 1.00 mm×1.00 mm×0.03 mm
的片状。 采用 D8-Advance 型 X 射线衍射仪(XRD)
对非晶条带进行物相分析。 利用电子探针(JEOL8230
型 EPMA)及扫描电镜(SEM)观察非晶复合非晶条
带及铁粉的表面形貌。
为了模拟污染环境，配置 1 000 mg/L的 Zn(Ⅱ)

溶液作为模仿含锌离子的废水溶液，量取 1L，称取
2.7 μm 铁粉 1 g 和 1.00 mm×1.00 mm×0.03 mm 的
Fe78Si9B13复合非晶条带 1 g，分别投放到 1 000 mg/L

的 Zn(Ⅱ)溶液中，溶液 pH值不做调整，温度为 298 K，
以 300 r/min的转速对溶液进行搅拌。反应总时间为
800 min,每隔 10 min 取出上清液，利用M31-AA2600
型原子吸收分光光度计测定清液中 Zn(Ⅱ)浓度，对
比分析 Fe78Si9B13非晶条带去除重金属离子 Zn(Ⅱ)的
去除效果，为工业净水提供理论依据。

2 实验结果及讨论
2.1 Fe-Si-B非晶条带材料表征
采用 XRD 和 SEM 对 Fe78Si9B13 非晶条带的物

相组成与微观形貌进行了表征。 如图 1a所示，XRD
图谱在 40°~50°(2θ)范围内呈现一个典型的漫散衍射
峰，证实了其主体为非晶结构；同时，图谱中出现的
微弱布拉格衍射峰对应于 α-Fe 晶体相， 这表明实
验所用的条带是含有少量晶态铁的非晶合金。 SEM
结果(图 1b)显示 ，为增大比表面积，已将条带裁剪成
1.00 mm×1.00 mm×0.03 mm的方片，其表面可见金
属光泽及少量微小坑洞， 这有助于增加反应活性位
点。 尽管存在微量晶态铁，但其含量有限，预计不会
对后续的重金属去除效果产生主要影响。
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的比表面积是 2.7 μm 铁粉的 40 倍， 因此 Fe78Si9B13

复合非晶条带对溶液中 Zn(Ⅱ)的去除性能优于 2.7 μm
铁粉 。 另外 ，两种材料对 Zn(Ⅱ)的去除过程展现
出的不同趋势意味着其对 Zn(Ⅱ)有不同的去除途
径[18]。
2.3 Fe78Si9B13非晶条带去除 Zn(Ⅱ)机理
图 3 为零价铁去除反应结束后收集产物的

XRD谱，未检测到关于锌的任何布拉格衍射峰。 而
在烧杯底部有大量未发生反应的 Fe粉，这也说明零
价 Fe粉 E0(Fe2+/FeO)=-0.44V远远高于 E0(Zn2+/ZnO)=
-0.763 V，不与 Zn(Ⅱ)发生还原反应，其中能够去除
一部分 Zn 主要是在反应后期 Fe 被水解氧化为 Fe-
(OH)3，同时铁粉表面电荷发生变化，而 Fe(OH)3 的
这种吸附作用毕竟有限，因此去除 Zn(Ⅱ)的效果不
明显[15]。 图 4为 Fe78Si9B13非晶条带去除反应结束后

收集产物的 XRD 谱， 未检测到关于锌的布拉格衍
射峰，这也说明 Fe78Si9B13非晶条带在去除过程中未

与 Zn(Ⅱ)发生还原反应，而是通过其他方式去除。
通过数据发现零价铁去除水体中 Zn(Ⅱ)有 2个

阶段，第Ⅰ个阶段反应速率比较慢，第Ⅱ个阶段反应
速率加快。 这主要是由于第Ⅰ阶段 Fe几乎不与 Zn(Ⅱ)
发生反应，E0(Zn2+/ZnO)=-0.763V远远低于(Fe2+/FeO)
=-0.44 V，零价铁不与 Zn(Ⅱ)发生还原反应，因此第

1阶段零价铁反应速率非常慢。 反应到 400 min后，
Fe 被水解氧化生成 Fe(OH)3和 Fe3O4，由于 Fe(OH)3
具有一定络合作用，会吸附水中的 Zn(Ⅱ)，出现了
去除效率加快的效果。 由于生成 Fe(OH)3，导致溶
液的 pH 值上升， 溶液由中性向碱性转变，pH 值大
于 8，铁粉带负电，从而加快了铁粉对 Zn(Ⅱ)的吸附
作用。 对于 Fe78Si9B13非晶合金条带， 在反应初期，
Fe78Si9B13非晶合金条带主要通过吸附净化水体中的

Zn(Ⅱ)离子，主要是因为 Fe78Si9B13非晶合金条带中

含有 13%的类金属元素 B 较为蓬松， 可以快速将
Zn(Ⅱ)吸附，因此一开始 Fe78Si9B13非晶合金条带就

表现出较强的去除水体中 Zn(Ⅱ)的效果[16-18]。当反应
到 300 min 后，Fe 被水解氧化生成 Fe(OH)3和Fe3O4，
产生大量的 Fe3+和 Fe2+，与 Zn2+发生共沉淀，故出现
了在 400 min之后去除效率加快的效果。
图 5a 为Fe78Si9B13非晶合金条带在含 Zn(Ⅱ)溶

液中反应后产物的 XRD 衍射图谱， 检测到 ZnSO4

的衍射图谱， 说明 Fe78Si9B13非晶合金条带在含 Zn
(Ⅱ)溶液中去除 Zn(Ⅱ)不是通过还原，这与前面的
在剩余固体物中未检测到 Zn 的衍射图谱一致 ，
Fe78Si9B13复合非晶合金条带主要通过吸附和共沉淀

的方式去除溶液中的 Zn(Ⅱ)。 图 5b为非晶条带表面
沉淀物 SEM像，白色絮状物为沉淀后的ZnSO4。

图 4 Fe78Si9B13非晶条带反应结束后剩余固体物质 XRD 谱
Fig.4 XRD pattern of the residual solid after the reaction of

Fe78Si9B13 amorphous band

图 5 反应产物 XRD 谱和 SEM像：(a) XRD 谱；(b) SEM像
Fig.5 XRD pattern and SEM image of the reaction products: (a) XRD pattern; (b) SEM image

图 3 Fe 粉反应结束后剩余固体物质 XRD 谱
Fig.3 XRD pattern of the residual solid after the reaction of the

Fe powder
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2.4 初始浓度对 Fe78Si9B13非晶条带去除 Zn(Ⅱ)效
果的影响

为了进一步了解环境条件对 Fe78Si9B13 非晶合

金条带去除 Zn(Ⅱ)的影响，分别在 1 000、1 500、
2 000 mg/L 3 种不同浓度的 Zn(Ⅱ)溶液中投入 1 g
的 1 mm×1 mm ×0.03 mm Fe78Si9B13非晶合金条带进

行去除试验。 如图 6 所示，在 500 min 之前，3 种体
系下 Zn(Ⅱ)的浓度降低非常微小，500 min 之后，下
降较为明显，在 700 min 之后，基本上不再下降。 可
以看出，随着 Zn(Ⅱ)溶液浓度提高，等质量的Fe78Si9B13

非晶条带去除 Zn(Ⅱ)的量略有增加，这主要是在非晶
条带表面未被吸附的 Zn(Ⅱ)完全覆盖的前提下，升
高浓度可有效提高溶液中 Zn (Ⅱ)与非晶条带表面
活性位点的碰撞概率，促使更多 Zn (Ⅱ)在有效时间
内被吸附和共沉淀。 然而毕竟吸附和共沉淀的去除效
率有限，到 700 min 之后 Zn(Ⅱ)的浓度基本不再下
降，3 种体系下的去除效率分别为 27.44%、32.56%、
36.25%。

2.5 初始温度对 Fe78Si9B13非晶条带去除 Zn(Ⅱ)效
果的影响

反应溶液温度升高， 反应速率会进一步提高，为
了分析反应温度对去除 Zn(Ⅱ)离子效果的影响，将
1 g 的 1.00 mm×1.00 mm×0.03 mm Fe78Si9B13非晶复

合条带投入到浓度为 1 000 mg/L的 Zn(Ⅱ)溶液中，
分别在 298、308、318、328 K下进行去除 Zn(Ⅱ)试验。
当温度从 298K上升到 328K时，去除率从27.44%提
高到 59.88%。 可见随着反应温度的升高，Fe78Si9B13

复合非晶合金对 Zn(Ⅱ)的去除速率会大幅度提高。
这主要是由于升高温度，可以加快溶液中 Zn(Ⅱ)离
子与非晶条带之间的碰撞频率， 从而促进共沉淀的
发生[19-21]。

3 结论
(1)通过高速甩制淬法制备的 Fe78Si9B13 非晶合

金条带去除水体中重金属离子 Zn(Ⅱ)，与 2.7 μm 的
Fe 粉进行对比试验， 其去除效率是零价铁的 2.11
倍，然而 1.00 mm×1.00 mm×0.03 mm Fe78Si9B13 非

晶合金条带表面积大约是 2.7 μm 铁粉的 40 倍 ，
Fe78Si9B13非晶合金条带去除 Zn(Ⅱ)主要通过吸附和
共沉淀，而零价铁主要通过吸附去除 Zn(Ⅱ)。

(2)Fe78Si9B13 非晶条带去除水体中 Zn(Ⅱ)的机
理主要是吸附和共沉淀，反应过程分 2个阶段完成，
第Ⅰ个阶段第反应速率比较慢， 第Ⅱ个阶段反应速
率加快，在温度为 298 K时，反应 750 min，去除效率
达到 27.44%。

(3)Zn(Ⅱ)溶液的初始浓度对去除效率也有一定
影响，在 1 000、1 500、2 000mg/L 3种不同浓度 Zn(Ⅱ)
溶液中的去除速率分别为 27.44%、32.56%、36.25%。

(4)初始温度对去除效率影响较大 ，溶液温度
从298 K 上升到 328 K， 去除率从 27.44%提高到
59.88%。
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