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Abstract. Laser-directed energy deposition technology can be used to achieve fixed-point repair and remanufacturing of
die-casting molds. However, during the laser forming process of medium-carbon hot work die steels, such as H13 steel,
high-carbon martensite with intrinsic brittleness is generated, leading to problems such as cracking and insufficient
plasticity. In response, a small amount of IN718 alloy powder was premixed and introduced into H13 steel before forming.
This increased the contents of nickel and chromium in the retained austenite during the forming process, lowered its
martensitic transformation temperature, and effectively inhibited the formation of high-carbon martensite. The tensile test
results show that the yield strength of the modified H13 steel is 1 176 MPa, the tensile strength is 1 615 MPa, and the
elongation at break reaches 10.6%. The comprehensive performance is superior to that of existing laser-directed energy
deposition methods for H13 steel. Microstructural analysis indicates that the austenite in the formed sample blocks is
scattered and that there is an enrichment of nickel and chromium in the regions where the austenite is distributed. The
scattered retained austenite can coordinate the deformation of the matrix and improve the uniformity of the internal
deformation of the material. Moreover, the introduction of nickel and chromium effectively improves the stability of the
retained austenite and delays the formation of high-carbon martensite.
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1 :(a) ;(b) 5(c) 5(d)
Fig.1 Gas-atomized powder raw material: (a) powder morphology; (b) distribution of Fe; (c) distribution of Cr; (d) distribution of Ni

2 :(a) ;(b) 5(c) ;
(d) ;(e)
Fig.2 Schematic diagram of laser cladding: (a) schematic diagram of the working principle of the laser head; (b) sample deposition
path and tensile specimens; (¢) schematic diagram of the sample formed by the continuous laser; (d) dimensions of the tensile
specimens; (e) forming physical photo
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Fig.3 XRD pattern of the as-deposited sample
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Fig.4 Micromorphology of the sample: (a, b) morphology under OM; (c, d) micromorphology under SEM
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Fig.5 EBSD and EDS characterization results of the sample prepared by the continuous laser: (a) phase distribution; (b) grain size;
(c) distribution of Ni; (d) distribution of Cr
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Fig.6 Tensile properties of the material: (a) tensile curve; (b) ultimate tensile strength and elongation at break of H13 formed by LDED
in other work!2 28311
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Fig.7 Morphology of tensile fracture morphology: (a) integral fracture morphology; (b) 2 000x; (c) 5 000x; (d) 2 000x; (e) 5 000x
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Fig.8 Schematic diagram of austenite formation and distribution
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