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Abstract: Eutectic multi-principal element alloys combine the good workability of eutectic alloys with the excellent
comprehensive properties caused by the high-entropy effects of multi-principal element alloys. By coupling various
microstructure regulation methods, more diverse microstructural characteristics are expected to be exhibited, and its
performance potential can be further explored. On the basis of this, static magnetic field and deep undercooling technology
were combined to systematically investigate the non-equilibrium solidification behavior and microstructural evolution law of
the FeCoNiBs alloy. The results demonstrate that with increasing undercooling, the primary structure undergoes a
morphological transition from «-M dendrites to seaweed-like eutectic dendrites, and the two phases inside the seaweed
transition from a-M/My;Bs to a-M/M;B. The alloy matrix frequently experiences competitive formation between the M,;B,
phase and the M;B phase, which is related to the critical nucleation barrier that needs to be overcome during solidification.
The coexistence of two phases in the matrix at A7=60 K is related to the solid-state phase transition from incomplete

decomposition of the M,;B, phase to the M;B phase. Both the M,;Bs and a-M phases have FCC crystal structures and
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exhibit significant coupled growth characteristics, forming a cube-cube orientation relationship during solidification.

Key words: eutectic multi-principal element alloy; high static magnetic field; nonequilibrium solidification; cube-cube
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Fig.1 Cooling behavior of the undercooled FeCoNiB,; alloy: (a) temperature-time curves corresponding to different samples;
(b) statistical results of the recalescence temperature ATy at different undercooling AT values
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Fig.2 XRD patterns of the undercooled FeCoNiB,; alloy
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3 FeCoNiBygs :(a) AT=60 K;(b) AT=105 K;(c) AT=127 K;(d) AT=148 K;(e) AT=175K;
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Fig.3 Solidification microstructures of FeCoNiB0.65 alloys with different degrees of undercooling: (a) AT=60 K; (b) AT=105 K;
(c) AT=127 K; (d) AT=148 K; (e) AT=175 K; (f) AT=255 K; (al~fl, a2~f2) corresponding close-up views of the square regions in
(a~f), respectively

MxBg ( 3e2); AT=255K , EBSD o 4a
a-M a-M/M;B )
( 312), , ,
, , 4b
EBSD o 4 AT=60K , FCC a-M

hEIM  https://www.cnki.net



Vol.46 No.11

-1052- FOUNDRY TECHNOLOGY Nov. 2025
M23B6 o
MB 4c , , a-M
a-M ,MxBg o s oa-M
- , M,:Bg a-M
M,;B, , , cube-cube ,
e My;Bg¢ s
EBSD , a-M ,
. ( 6d~)
4d , o-M/M;B a-M/MyBg
, A 1.5 pm, , cube-cube
60 K ,AT=105 K .
, 148 K,
My:Bg , M:B 5 o
,0-M 7a , 7b
, o o-M MxsBs & Tc
cube-cube o
, a-M/M;B , ( 7d) cube-cube
A 2.7 pm, <001>a-M 7/ <001>MxBg; (001)x-M 7/ (001)MBs,
127K, 6a AT=175K
) o 8
MyBs  ( 6b), My;Bg o-M EBSD . AT=175K
FCC cube-cube , o ,
6¢ o-M MxBs
4 AT=60 K ,FeCoNiBgs EBSD :(a) ;(b) ;(0) ;(d)

Fig.4 EBSD analysis of the FeCoNiB alloy at AT=60 K: (a) BC map; (b) phase map; (c) IPF map; (d) enlarged image of the lamellar
eutectic region in the phase map
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Fig.5 EBSD analysis of the FeCoNiB alloy at A7=105 K: (a) BC map; (b) phase map; (c) IPF map; (d) enlarged image of the
lamellar eutectic region in the phase map
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Fig.6 EBSD analysis of the FeCoNiB,s alloy at AT=127 K: (a) BC map; (b) phase map; (c) IPF map; (d~f) enlarged image of the
square regions
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Fig.7 EBSD analysis of the FeCoNiB,s alloy at AT=148 K: (a) BC map; (b) phase map; (c) IPF map; (d) polar diagram
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Fig.8 EBSD analysis of the FeCoNiB,; alloy with the formation of seaweed morphology: (a~c) BC map, phase map and IPF map at
AT=175 K; (d~f) BC map, phase map and IPF map at AT=255 K
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Fig.10 Solidification paths of the FeCoNiB; alloy at different degrees of undercooling
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