DOI: 10.16410/j.issn1000-8365.2025.5062

# Ti、Zr 微合金化对铸造 Al-6Ni 共晶合金组织和 力学性能的影响

吉1,陈 旭1,金 通1,毛有武2,蔡启舟1,蒋文明1

(1. 华中科技大学 材料成形与模具技术全国重点实验室,湖北 武汉 430074; 2. 华中科技大学 材料科学与工程国家级示 范教学中心,湖北武汉430074)

摘 要:研究了 Ti、Zr 微合金化对铸造 Al-6Ni 共晶合金凝固过程、微观组织和力学性能的影响。结果表明、金属型 铸造 Al-6Ni 共晶合金组织由初生  $\alpha$ -Al 相和( $\alpha$ -Al+Al,Ni)共晶组成,随着 Ti、Zr 的添加,初生  $\alpha$ -Al 相的数量逐渐增加, 其晶粒尺寸逐渐减小。初生 α-Al 相依附于 Ti、Zr 化合物形核,形核过冷度减小、形核温度升高,添加(0.3%Ti+0.3%Zr,质 量分数)时,其形核温度由 Al-6Ni 合金的 632 ℃升高至 638.5 ℃。共晶凝固时间随 Ti、Zr 的添加而逐渐减少,但共晶 Al,Ni 的形态和尺寸无明显变化,当 Ti、Zr 添加量较高时,共晶团边界形成了少量条状 Al,(Ti, Zr)相和块状 Al,Ni 相。添 加(0.2%Ti+0.2%Zr)时 Al-6Ni 合金的抗拉强度、屈服强度和伸长率分别为 140 MPa、82 MPa 和 26%、较 Al-6Ni 合金分别 提高了8%、25%和61%,其断口由撕裂棱、韧窝和少量解理面组成,以韧性断裂为主。

关键词: Al-6Ni 合金; Ti、Zr 微合金化; 凝固过程; 微观组织; 力学性能

中图分类号: TG146.2+1

文献标识码:A

文章编号:1000-8365(2025)07-0665-08

# Effect of Ti and Zr Microalloying on the As-cast Microstructure and Mechanical Properties of Al-6Ni Eutectic Alloy

CHEN Ji<sup>1</sup>, CHEN Xu<sup>1</sup>, JIN Tong<sup>1</sup>, MAO Youwu<sup>2</sup>, CAI Qizhou<sup>1</sup>, JIANG Wenming<sup>1</sup>

(1. State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China; 2. National Experimental Teaching Demonstration Center of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

Abstract: The effects of Ti and Zr microalloying on the solidification process, microstructure, and mechanical properties of an as-cast Al-6Ni eutectic alloy were investigated. The results show that the microstructure of the Al-6Ni eutectic alloy cast in the permanent mold is composed of a primary  $\alpha$ -Al phase and an  $(\alpha$ -Al+Al<sub>3</sub>Ni) eutectic. The primary  $\alpha$ -Al phase nucleates on the compounds containing Ti and Zr, resulting in a decrease in undercooling and an increase in the nucleation temperature. When adding 0.3 wt.% Ti+0.3 wt.% Zr, the nucleation temperature of the Al-6Ni alloy increases from 632 °C to 638.5 °C. The eutectic solidification time gradually decreases with the addition of Ti and Zr, but there is no significant change in the morphology or size of the eutectic Al<sub>3</sub>Ni phase. When the amount of Ti and Zr added is relatively high, a small amount of strip-shaped Al<sub>3</sub>(Ti, Zr) phase and blocky Al<sub>3</sub>Ni phase are formed at the eutectic boundaries. The tensile strength, yield strength and elongation of the Al-6Ni alloy with the addition of 0.2 wt.% Ti+0.2 wt.% Zr are 140 MPa, 82 MPa and 26%, respectively, which are 8%, 25% and 61% greater than those of the Al-6Ni alloy. The fracture surface is composed of tear ridges, dimples and a small number of cleavage planes, with ductile fracture being the main type.

Key words: Al-6Ni alloy; Ti and Zr microalloying; solidification process; microstructure; mechanical properties

Al-Ni 合金具有优异的力学性能、良好的耐腐

制造和电子工业中具有广阔的应用前景。近年来, 蚀性、高温稳定性及铸造成形性,在航空航天、汽车 Al-6.1%Ni(质量分数,简称 Al-6Ni)共晶合金引起了

收稿日期: 2025-04-11

基金项目: 国家自然科学基金(52075198)

作者简介: 陈 吉,1999 年生,硕士生.研究方向为高性能铸造铝合金. Email: m202270951@hust.edu.cn

通信作者:毛有武,1965年生,本科,高级工程师.研究方向为铸造合金熔炼与微观组织分析、金属材料检测与控制.

Email: ywhust@hust.edu.cn

引用格式: 陈吉, 陈旭, 金通, 毛有武, 蔡启舟, 蒋文明. Ti、Zr 微合金化对铸造 Al-6Ni 共晶合金组织和力学性能的影响[J]. 铸造技术, 2025, 46(7): 665-672.

CHEN J, CHEN X, JIN T, MAO Y W, CAI Q Z, JIANG W M. Effect of Ti and Zr microalloying on the as-cast microstructure and mechanical properties of Al-6Ni eutectic alloy[J]. Foundry Technology, 2025, 46(7): 665-672.

人们的广泛关注<sup>[1-3]</sup>。该合金组织由 α-Al 和具有高纵横比和亚微米直径的纤维状 Al<sub>3</sub>Ni 强化相组成,具有较高的屈服强度、电导率、热导率,以及低的膨胀系数<sup>[4-5]</sup>,能满足电动汽车部件对铝合金的性能要求。此外,共晶合金的凝固范围窄,流动性好,热裂倾向低,因此,Al-6Ni 共晶合金可采用传统铸造和增材制造等技术成形<sup>[6-7]</sup>。

但因 Ni 在 α-Al 中扩散率高、固溶度低, Al-6Ni 共晶合金不能通过时效强化提高性能。研究表明, 通过在 Al-6Ni 二元合金中添加少量合金元素,如 Sc、Zr和Ti等,这些过渡元素在Al中的扩散系数 相对较低,在时效过程中会于AI基体中形成与基 体具有良好共格关系的亚稳 L12 沉淀相,显著提高 合金强度、硬度和热稳定性。Suwanpreecha 等图在 Al-6Ni 合金中添加(0.1%~0.3%)Sc 和(0.2%~0.4%)Zr (质量分数), 合金组织由共晶组织转变为亚共晶组 织;在随后的时效过程中,Al3(Sc, Zr)纳米颗粒在 Al<sub>3</sub>Ni 微纤维间的 α-Al 基体中析出,产生显著的沉 淀强化效果。Pandey等鬥发现,在Al-6Ni合金中添 加 0.15%(原子分数)的 Zr 后, Zr 在 α-Al 和 Al<sub>3</sub>Ni 之 间的界面上偏析,减缓了 250 ℃下 Al<sub>3</sub>Ni 相的粗化 速率。Chen等<sup>[9]</sup>在 Al-4Ni-0.4V 合金中联合添加 Zr、 Ti, 发现 Zr、Ti 可有效抑制共晶 Al<sub>3</sub>Ni 相的粗化,显 著提高合金的热稳定性。Kwon等[10]通过热力学分 析证明,L12-Al,Ti 析出的主要制约因素是化学驱动 力低,需要在 α-Al 中添加超过 3%(质量分数)的 Ti 来克服这些限制,因此,为了发挥 Ti 的析出强化作 用,需要与其他过渡族元素联合添加,以获得 L12 析 出强化相。如 Malek 等[11]和 Knipling 等[12-13]研究发 现,铝合金中联合添加 Ti、Zr 时,在时效过程可析出 具有 L12 结构的 Al3(Zr1xTix)强化相。但是,目前关于 Ti、Zr 联合添加对铸造 Al-6Ni 共晶合金组织和性能 的影响尚不明确,有待深入研究。

为此,本文以 Al-6Ni 共晶合金为研究对象,采用经济实用的 Ti 和 Zr 元素进行微合金化,研究 Ti 和 Zr 对铸造 Al-6Ni 共晶合金凝固过程、微观组织及力学性能的影响,并探明 Ti、Zr 对铸造 Al-6Ni 共晶合金组织的影响机制。

# 1 实验材料与方法

#### 1.1 试样制备

以 Al-10Ni(质量分数,%,下同)中间合金和工业纯 Al 为原料配置 Al-6Ni 二元合金。在石墨坩埚电阻炉中熔炼,当熔炼温度达到 800 ℃后通入高纯氩气除气、扒渣,静置降温至 750 ℃,浇注如图 1a 所示

的金属型,制备 Al-6Ni 合金锭,浇注前金属型预热至  $(220\pm5)^{\circ}$  。在熔化的 Al-6Ni 合金液分别添加Al-5Ti 和 Al-5Ti 中间合金制备 Ti、Zr 微合金化 Al-6Ni 合金,基于前期研究结果<sup>[9]</sup>,选取 Ti、Zr 的加入量分别为 0%~0.3%,制备的合金用代号 Al-6Ni-xTi-xZr (x=0.1,0.2,0.3)表示。采用 ELANDRC-e 型电感耦合等离子体质谱仪 (inductively coupled plasma mass spectrometry,ICP-MS)分析合金成分,结果如表 1 所示。

表1 Al-6Ni-xTi-xZr合金化学成分
Tab.1 Chemical compositions of the Al-6Ni-xTi-xZr alloys
(mass fraction/%)

|                    |      |      | ,    |      | ,    |
|--------------------|------|------|------|------|------|
| Alloys             | Ni   | Si   | Ti   | Zr   | Al   |
| Al-6Ni             | 5.89 | 0.12 | -    | -    | Bal. |
| Al-6Ni-0.1Ti-0.1Zr | 5.92 | 0.15 | 0.12 | 0.14 | Bal. |
| Al-6Ni-0.2Ti-0.2Zr | 5.91 | 0.17 | 0.21 | 0.22 | Bal. |
| Al-6Ni-0.3Ti-0.3Zr | 5.91 | 0.18 | 0.29 | 0.31 | Bal. |

#### 1.2 凝固曲线

采用树脂砂热分析杯、K型热电偶和 NI-9213数据采集仪器对 Al-6Ni 合金的凝固过程进行记录,冷端补偿精度为  $0.8 \, ^{\circ}$ 、测量灵敏度小于  $0.02 \, ^{\circ}$ 、采样频率 75 Hz,利用 DAQ-Express 热分析软件记录 750~400  $^{\circ}$  飞范围冷却曲线。

#### 1.3 组织表征

如图 1a 所示, 从距离铸锭底部 40 mm 处线切 割截取 10 mm×10mm×10mm 的立方体试样,经预磨 后在 XRD-7000s X 射线衍射仪上进行物相分析。工 作电压 40 kV,工作电流 100 mA,Cu 靶 Kα,衍射角 10°~90°,扫描速度 3 (°)/min。试样经预磨抛光后采 用浓度 0.5%(体积分数)HF 水溶液腐蚀 10 s, 利用 DMM-580C 光学显微镜观察合金的显微组织。在 金相照片上采用线性截距法 (linear intercept method, LIM)测定初生  $\alpha$ -Al 晶粒尺寸(100×,测量精度 ±2 μm),每个样品随机取 10 个视野的平均值。利用 Quanta 650 FEG 型场发射扫描电镜观察金属间化合 物的形貌,并用能谱仪(energy dispersive spectrometer, EDS)进行化合物成分分析。用 10%(体积分数)HCl 水溶液对每个样品进行 10 min 深腐蚀后,通过场发 射扫描电子显微镜 (field emission scanning electron microscopy, FSEM)观察共晶 Al<sub>3</sub>Ni 相的三维形貌。

#### 1.4 力学性能

在铸锭距离中心线 10 mm 处,采用线切割沿纵向截取拉伸试样,拉伸试样截取部位及其形状与尺寸如图 1b 所示,在 Zwick Z020 万能材料试验机上进行常温拉伸试验,拉伸速度为 1 mm/min。采用Wilson 430 SVD 维氏硬度计测量合金的常温硬度,试验力为 4.9 N,加载时间为 15 s,每个试样测试 10

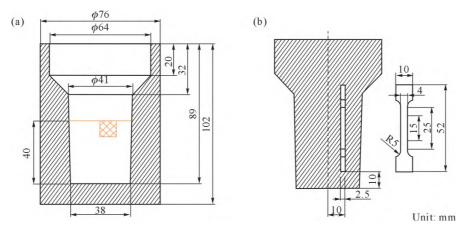



图 1 模具与取样示意图:(a) 金属型;(b) 拉伸试样

Fig.1 Permanent mold and sampling positions: (a) permanent mold; (b) tensile sample

次,去除明显偏差数据后取平均值。

# 2 实验结果及讨论

#### 2.1 宏观组织

图 2 为不同 Ti、Zr 添加量 Al-6Ni 合金试样横截面的宏观组织,从图 2a 可以看出,Al-6Ni 合金宏观组织全部为粗大柱状晶,沿径向延伸至中心,形成了穿晶组织。Al-6Ni-0.1Ti-0.1Zr 合金宏观组织中柱状晶消失,全部为细小等轴晶(图 2b);Al-6Ni-0.2Ti-0.2Zr 和 Al-6Ni-0.3Ti-0.3Zr 合金晶粒尺寸进一步减小,肉眼难以分辨晶粒大小,如图 2c 和 d 所示。

### 2.2 XRD 物相分析

图 3 为 Al-6Ni 和 Ti、Zr 微合金化 Al-6Ni 合金 XRD 谱。结果显示,Al-6Ni 合金由  $\alpha$ -Al 相和 Al<sub>3</sub>Ni 相组成。而 Al-6Ni-0.1Ti-0.1Zr 中除  $\alpha$ -Al 相和 Al<sub>3</sub>Ni 相的衍射峰外,出现了较明显的 Al<sub>3</sub>Ti 衍射峰,其 (200)晶面峰强为 2 473.8 a.u.,以及微弱的 Al<sub>3</sub>Zr 衍射峰,其(224)晶面峰强为 1 206.6 a.u.。随着 Ti、Zr 含量的增加,Al<sub>3</sub>Zr 的峰强逐渐增加,Al-6Ni-0.2Ti-0.2Zr 合金的 Al<sub>3</sub>Zr(224) 晶面峰强为 1 350.3 a.u.,Al-6Ni-0.3Ti-0.3Zr 合金的峰强增强至 1 454 a.u.,而 Al<sub>3</sub>Ti 的峰强则无明显变化。

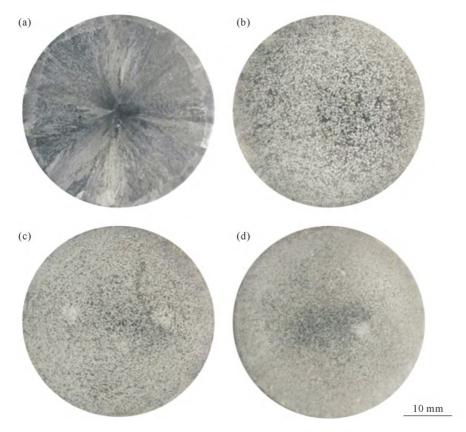



图 2 Al-6Ni-xTi-xZr 合金宏观组织:(a) x=0; (b) x=0.1; (c) x=0.2; (d) x=0.3 Fig.2 Macrostructures of the Al-6Ni-xTi-xZr alloys: (a) x=0; (b) x=0.1; (c) x=0.2; (d) x=0.3

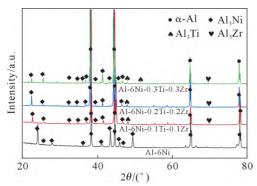



图 3 Al-6Ni-xTi-xZr 合金的 XRD 谱 Fig.3 XRD patterns of the Al-6Ni-xTi-xZr alloys

## 2.3 显微组织

(1)初生  $\alpha$ -Al 相 图 4 为 Al-6Ni- $\alpha$ Ti- $\alpha$ Zr 合金显微组织。从图 4a 可以看出 Al-6Ni 合金由枝晶状初生  $\alpha$ -Al 和( $\alpha$ -Al-Al $\alpha$ Ni)共晶团组成,呈典型的亚共晶组织特征。随着 Ti、Zr 的加入,初生  $\alpha$ -Al 由粗大的枝晶向细小等轴生长转变,晶粒尺寸明显减小,且组织中初生  $\alpha$ -Al 的比例逐渐增加。当添加量超过(0.2%Ti+0.2%Zr)时,晶粒尺寸与初生  $\alpha$ -Al 相比例的变化不明显。

对组织中初生 α-Al 相的数量和尺寸进行了统

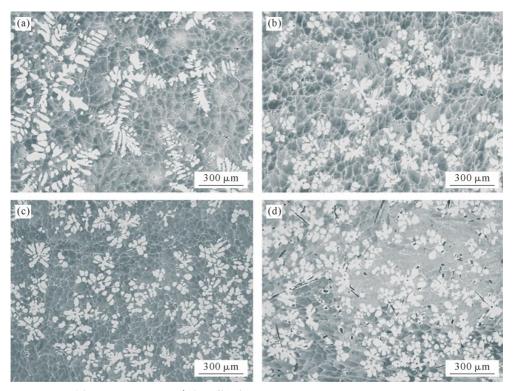



图 4 Al-6Ni-xTi-xZr 合金显微组织 :(a) x=0; (b) x=0.1; (c) x=0.2; (d) x=0.3 Fig.4 Microstructures of the Al-6Ni-xTi-xZr alloys: (a) x=0; (b) x=0.1; (c) x=0.2; (d) x=0.3

计分析,如图 5 所示。结果显示,Al-6Ni 合金中初生  $\alpha$ -Al 相占比为 18.2%,随着 Ti 和 Zr 量增加,初生  $\alpha$ -Al 相的数量增加,Ti 和 Zr 量分别超过 0.2%后,初生  $\alpha$ -Al 相数量增加不明显。初生  $\alpha$ -Al 相的晶粒尺寸随 Ti、Zr 的添加逐渐细化,添加(0.1%Ti+0.1%Zr),初生  $\alpha$ -Al 相的晶粒尺寸由 Al-6Ni 的 571  $\mu$ m 细化至 152  $\mu$ m,继续增加 Ti、Zr 添加量,初生  $\alpha$ -Al 相的晶粒尺寸呈小幅下降。

上述结果显示,Al-6Ni 合金和微合金化 Al-6Ni 合金均出现了一定数量初生  $\alpha$ -Al,且随着 Ti、Zr 含量的增加,初生  $\alpha$ -Al 数量增加,晶粒细化。初生  $\alpha$ -Al 的形成与 Al-Al<sub>3</sub>Ni 的非对称型伪共晶共生区有关[14],如图 6 所示。因 Al-Al<sub>3</sub>Ni 的共晶共生区偏向 Al<sub>3</sub>Ni 一层,共晶成分的液相表象点  $\alpha$  不会过冷到伪 共晶区内,只有先结晶出  $\alpha$ -Al 相, $\alpha$ -Al 相向液体中

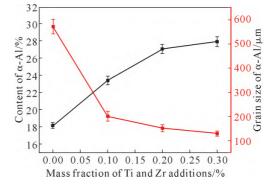



图 5 初生 α-Al 相含量与尺寸随 Ti、Zr 添加量的变化 Fig.5 Changes in the primary α-Al phase content and size with the addition of Ti and Zr

排出溶质原子 Ni, 当液体的成分达到 b 点(共晶共生区内)时,才能发生共晶转变。其结果类似共晶点右移,共晶合金获得了亚共晶组织。当添加 Ti、Zr 后,铝液形成  $Al_3Zr$ 、 $Al_3Ti$ ,促进  $\alpha$ -Al 形核生长,增加

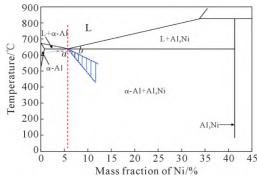



图 6 Al-Ni 合金共晶共生区 Fig.6 Eutectic zone of the Al-Ni alloy

 $\alpha$ -Al 的数量,并细化  $\alpha$ -Al 相。

(2)共晶组织 图 7 为不同含量的 Ti、Zr 联合添加 Al-6Ni 合金的共晶组织。Al-6Ni 合金的共晶组织由中心棒状共晶和边缘层状共晶组成,在共晶边界处存在粗粒状共晶 Al<sub>3</sub>Ni 相,这是凝固后期 Ni 元素偏析形成的粗大 Al<sub>3</sub>Ni。随着微合金化元素添加量的增加,合金中共晶 Al<sub>3</sub>Ni 的形貌与尺寸无明显变化。

(3)Ti、Zr 化合物 图 3 的 XRD 衍射峰显示,添加(0.1%Ti+0.1%Zr)合金中出现了 Al₃Ti 和 Al₃Zr 的衍射峰,对 Al-6Ni-0.2Ti-0.2Zr 和 Al-6Ni-0.3Ti-0.3Zr 合金进行了 SEM 高倍观察分析,如图 8 所示。由图 8a 和 b 可以看出,白色化合物位于初生  $\alpha$ -Al 和共晶团边界,表 2 的 EDS 成分分析(点 1~3)表明,白色化合物包含 Al₃(Ti, Zr)和 Al₃Ni,这是因为 Ni、Ti、Zr 在  $\alpha$ -Al 中的固溶度极低,偏析于最后凝固的液相,形

表2 图8中化合物的EDS成分分析
Tab.2 EDS analysis of the compounds in Fig. 8
(atomic fraction/%)

|       |       |       |       | `    | ,                        |
|-------|-------|-------|-------|------|--------------------------|
| Point | Al    | Ni    | Ti    | Zr   | Phase                    |
| 1     | 75.78 | 24.22 | 0.00  | 0.00 | Al <sub>3</sub> Ni       |
| 2     | 81.70 | 0.17  | 12.31 | 5.82 | Al <sub>3</sub> (Ti, Zr) |
| 3     | 74.81 | 25.19 | 0.00  | 0.00 | Al <sub>3</sub> Ni       |
| 4     | 74.75 | 25.25 | 0.00  | 0.00 | Al <sub>3</sub> Ni       |
| 5     | 78.66 | 0.00  | 17.18 | 4.16 | Al <sub>3</sub> (Ti, Zr) |

成颗粒状  $Al_3(Ti, Zr)$ 和块状  $Al_3Ni$ 。由图 8c 和 d 可知,添加(0.3%Ti+0.3%Zr)时,形成条状  $Al_3(Ti, Zr)$ 分布于  $\alpha$ -Al 中;而偏析于共晶团边界的 Ni 形成了针状  $Al_3Ni$  相。基于二元 Al-Ti 和 Al-Zr 相图可知,Al-Ti 的包晶点和 Al-Zr 合金的包晶点分别为0.15%Ti 和 0.28% $Zr^{[15]}$ ,当添加(0.2%Ti+0.2%Zr)时析出少量  $Al_3Ti$  和  $Al_3Zr$  相,而添加 (0.3%Ti+0.3%Zr)时,析出条状初生  $Al_3Ti$  和  $Al_3Zr$  相。在铝合金中, $Al_3Ti$  和  $Al_3Zr$  化合物中的 Ti 和 Zr 可以相互置换,形成初生  $Al_3(Ti, Zr)$ 相。

## 2.4 凝固过程

图 9a 为 Al-6Ni 合金凝固曲线及一阶微分与二阶微分曲线,基于一阶微分和二阶微分曲线可确定合金凝固的特征参数。图 9b 为 Al-6Ni-xTi-xZr 合金的凝固曲线,基于图 9a 的分析方法获得各凝固曲线的特征温度,如表 3 所示。

由图 9b 可知,Al-6Ni 及微合金化 Al-6Ni 合金的

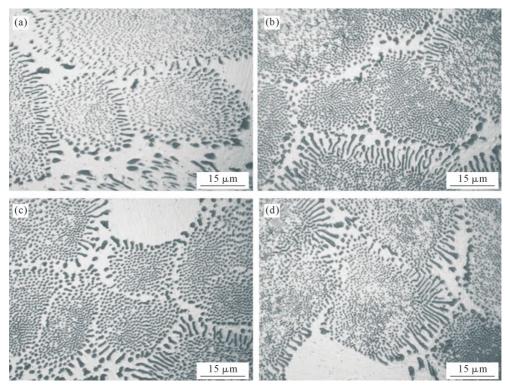



图 7 Al-6Ni-xTi-xZr 合金共晶组织:(a) x=0; (b) x=0.1; (c) x=0.2; (d) x=0.3 Fig.7 Eutectic microstructures of the Al-6Ni-xTi-xZr alloys: (a) x=0; (b) x=0.1; (c) x=0.2; (d) x=0.3

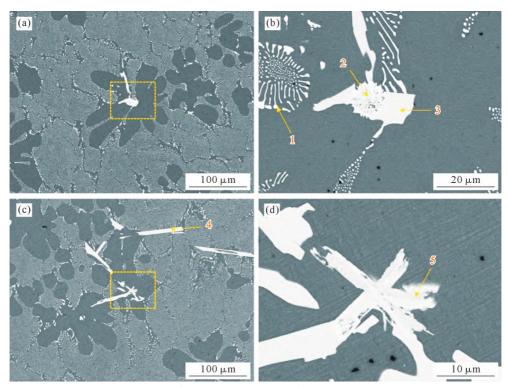



图 8 Al-6Ni-xTi-xZr 合金中含 Ti、Zr 金属化合物 : (a, b) x=0.2; (c, d) x=0.3 Fig.8 Compounds containing Zr and Ti in Al-6Ni-xTi-xZr alloys: (a, b) x=0.2; (c, d) x=0.3

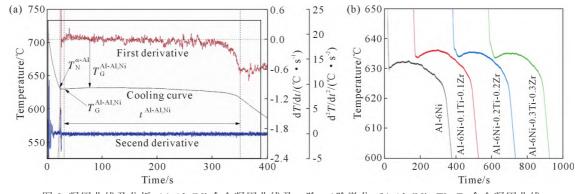



图 9 凝固曲线及分析:(a) Al-6Ni 合金凝固曲线及一阶、二阶微分;(b) Al-6Ni-xTi-xZr 合金凝固曲线 Fig.9 Solidification curve and analysis: (a) solidification curve of the Al-6Ni alloy and differential transformation; (b) solidification curves of the Al-6Ni-xTi-xZr alloys

表3 Al-6Ni-xTi-xZr合金凝固曲线特征参数 Tab.3 Characteristic parameters of the Al-6Ni-xTi-xZr alloy solidification curves

| Alloys             | $T_{ m \scriptscriptstyle N}^{^{lpha	ext{-Al}}}/^{\circ}\!{ m C}$ | $T_{ m N}^{ m Al-Al_3Ni}/^{\circ}{ m C}$ | $T_{ m G}^{ m Al-Al,Ni}/{^{\circ}{ m C}}$ | $\Delta T_{ m R}^{ m Al-Al_3Ni}/{^{\circ}{ m C}}$ | $t^{\text{Al-Al}_3 \text{Ni}}/\text{s}$ |
|--------------------|-------------------------------------------------------------------|------------------------------------------|-------------------------------------------|---------------------------------------------------|-----------------------------------------|
| Al-6Ni             | 632.0                                                             | 630.4                                    | 631.9                                     | 1.6                                               | 318                                     |
| Al-6Ni-0.1Ti-0.1Zr | 634.3                                                             | 633.8                                    | 635.7                                     | 2.4                                               | 312                                     |
| Al-6Ni-0.2Ti-0.2Zr | 636.7                                                             | 635.2                                    | 635.4                                     | 1.8                                               | 310                                     |
| Al-6Ni-0.3Ti-0.3Zr | 638.5                                                             | 635.8                                    | 634.8                                     | 1.4                                               | 306                                     |

凝固曲线上均有初生  $\alpha$ -Al 析出平台,表明共晶Al-6Ni 合金中析出了初生  $\alpha$ -Al 相。从表 3 可以看出,Al-6Ni 合金初生  $\alpha$ -Al 相形核温度为 632.0  $^{\circ}$  , 随着 Ti、Zr 含量的增加,形核温度逐渐提高,当添加(0.3% Ti+0.3%Zr)时形核温度为 638.5  $^{\circ}$  , 这是由于添加 Ti、Zr 后形成  $Al_3Zr$  或  $Al_3Ti$  , 初生  $\alpha$ -Al 相依附于这 些化合物形核,过冷度降低,形核温度升高[16-17]。

共晶凝固阶段,与 Al-6Ni 合金相比,添加(0.1%Zr +0.1%Ti),共晶的形核温度  $T_{\rm N}^{\rm Al-Al,Ni}$ 、生长温度  $T_{\rm G}^{\rm Al-Al,Ni}$  和共晶再辉  $\Delta T_{\rm R}^{\rm Al-Al,Ni}$  均有提高,而共晶凝固时间  $t^{\rm Al-Al,Ni}$  缩短。继续增加 Ti、Zr 量, $T_{\rm N}^{\rm Al-Al,Ni}$  小幅升高,而  $T_{\rm G}^{\rm Al-Al,Ni}$ 、 $\Delta T_{\rm R}^{\rm Al-Al,Ni}$  和  $t^{\rm Al-Al,Ni}$  连续减小,这是因为 Ti、Zr 的添加,初生  $\alpha$ -Al 相形核和长大的温度升高,共晶

形核温度升高。但是,由于 α-Al 相的数量增加,共晶 共生生长需要更低的温度(图 6),造成共晶再辉温度 和生长温度下降,且共晶体的数量相应减少,共 晶凝固时间缩短。

#### 2.5 力学性能

由图 10Al-6Ni-xTi-xZr 合金的拉伸应力-应变 曲线可知 Al-6Ni-0.2Ti-0.2Zr 和 Al-6Ni-0.3Ti-0.3Zr 合金的强度和塑性较好。表 4 为Al-6Ni-xTi-xZr 合金 的拉伸性能和维氏硬度。由表可知,Al-6Ni 合金抗拉 强度、屈服强度和伸长率分别为129 MPa、66 MPa 和 16%, 而 Al-6Ni-0.2Ti-0.2Zr 合金抗拉强度、屈服强度 和伸长率分别为 140 MPa、82 MPa 和 26%, 较 Al-6Ni 合金分别提高了8%、25%和61%。这是因为Ti和Zr 的联合添加使初生 α-Al 由粗大树枝状向花瓣状转 变,并显著减小初生 α-Al 的晶粒尺寸,但共晶组织 并未因 Ti、Zr 的添加而发生显著变化。Al-6Ni-0.3Ti-0.3Zr 合金的抗拉强度、屈服强度和伸长率分别为 133MPa、71MPa和17%,均较Al-6Ni-0.2Ti-0.2Zr 合金 有降低。虽然 Al-6Ni-0.3Ti-0.3Zr 合金的初生 α-Al 相晶粒较小,但当 Ti、Zr 含量高时,合金中出现少量 条状 Al<sub>3</sub>(Ti, Zr)相和块状 Al<sub>3</sub>Ni 相,这些条状或块状 相在受力时易引起应力集中,萌生裂纹,造成材料的 早期断裂,对合金的强度和塑性均造成不利影响[18]。

表 4 的硬度数值显示,随着 Ti、Zr 的添加,Al-6Ni-xTi-xZr 合金的硬度逐渐升高,这与初生 $\alpha$ -Al 相的晶粒细化、高 Ti、Zr 含量时析出的条状  $Al_3$ (Ti, Zr)相和块状  $Al_3$ Ni 相有关。

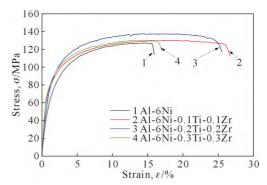



图 10 Al-6Ni-xTi-xZr 合金拉伸应力-应变曲线 Fig.10 Tensile stress-strain curves of the Al-6Ni-xTi-xZr alloys

表4 Al-6Ni-xTi-xZr合金力学性能 Fig.4 Mechanical properties of Al-6Ni-xTi-xZr alloys

| Alloys             | $R_m$ /MPa | $R_{p0.2}$ /MPa | A/%    | Hardness(HV) |
|--------------------|------------|-----------------|--------|--------------|
| Al-6Ni             | 129±4.0    | 66±1.7          | 16±0.4 | 52±1.4       |
| Al-6Ni-0.1Ti-0.1Zr | 136±3.6    | $70 \pm 1.8$    | 24±0.4 | 60±1.6       |
| Al-6Ni-0.2Ti-0.2Zr | 142±3.9    | 82±2.0          | 26±0.5 | 62±1.6       |
| Al-6Ni-0.3Ti-0.3Zr | 133±3.6    | 71±1.9          | 17±0.4 | 63±1.7       |

图 11 为 Al-6Ni-xTi-xZr 合金拉伸试样的断口形貌。如图 11a 所示,Al-6Ni 合金断口呈现出由撕裂棱、韧窝和解理面组成的混合形态,共晶区以共晶 Al<sub>3</sub>Ni 相为中心形成韧窝。随着 Ti、Zr 的添加,解理面减少,韧窝区增加,当加入(0.2%Zr+0.2%Ti)时,断口由撕裂棱、韧窝和少量解理面组成,这是因为初生α-Al 相的晶粒细化,合金韧性提高。但是,当加入(0.3%Zr+0.3%Ti) 时,由于组织中出现了少量条状Al<sub>3</sub>(Ti, Zr)相和针状、块状 Al<sub>3</sub>Ni 相,解理面占比又开始增加,合金塑性下降,断口的形态变化与合金的组织和拉伸性能呈现良好的对应关系。

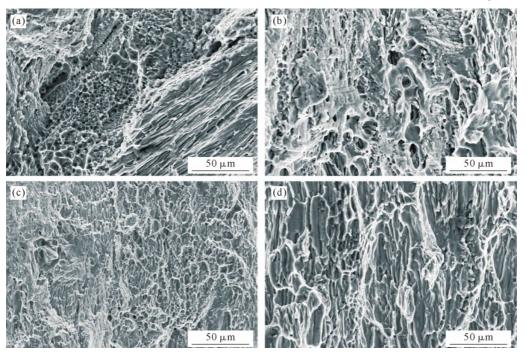



图 11 Al-6Ni-xTi-xZr 合金拉伸试样断口形貌:(a) x=0;(b) x=0.1;(c) x=0.2;(d) x=0.3 Fig.11 Tensile fracture morphology of the Al-6Ni-xTi-xZr alloys: (a) x=0; (b) x=0.1; (c) x=0.2; (d) x=0.3

# 3 结论

(1)金属型铸造 Al-6Ni 共晶合金组织由初生 $\alpha$ -Al 相和( $\alpha$ -Al+Al $_3$ Ni)共晶组成,呈典型亚共晶组织。随着 Ti、Zr 的添加,初生  $\alpha$ -Al 相数量逐渐增加,其晶粒尺寸逐渐减小。

(2)在 Al-6Ni 合金中添加 Ti、Zr,初生 α-Al 相的 形核温度升高,添加(0.3%Zr+0.3%Ti)时,初生 α-Al 相的形核温度由 632 ℃升高至 638.5 ℃,而共晶凝 固时间则随 Ti、Zr 的添加而逐渐减少。

(3)Ti、Zr 对 Al-6Ni 合金的共晶组织无明显影响, 当添加(0.2%Zr+0.2%Ti)和(0.3%Zr+0.3%Ti)时,共晶团边界形成了少量条状 Al<sub>3</sub>(Ti, Zr)相和块状 Al<sub>3</sub>Ni 相。

(4)Al-6Ni-0.2Ti-0.2Zr 合金的抗拉强度、屈服强度和伸长率分别为 140 MPa、82 MPa 和 26%,较Al-6Ni 合金分别提高了 8%、25%和 61%,其断口由撕裂棱、韧窝和少量解理面组成,以韧性断裂为主。

## 参考文献:

- SUWANPREECHA C, PANDEE P, PATAKHAM U, LIMMA-NEEVICHITR U. New generation of eutectic Al-Ni casting alloys for elevated temperature services [J]. Materials Science and Engineering: A, 2018, 709: 46-54.
- [2] CZERWINSKI F. Thermal stability of aluminum-nickel binary alloys containing the Al-Al<sub>3</sub>Ni eutectic[J]. Metallurgical and Materials Transactions A, 2021, 52: 4342-4356.
- [3] KAYA H, BÖYÜK U, ÇADIRLI E, MARASLI N. Measurements of the microhardness, electrical and thermal properties of the Al-Ni eutectic alloy[J]. Materials & Design, 2012, 34: 707-712.
- [4] PANDEY P, MAKINENI S K, GAULT B, CHATTOPADHYAY K. On the origin of a remarkable increase in the strength and stability of an Al rich Al-Ni eutectic alloy by Zr addition[J]. Acta Materialia, 2019, 170: 205-217.
- [5] SANKANIT P, UTHAISANGSUK V, PANDEE P. Thermal stability of Al-4Ni-1Mn alloy with Sc and Zr addition[J]. Materials Characterization, 2022, 192: 112227.
- [6] DENG J W, CHEN C, LIU X C, LI Y P, ZHOU K C, GUO S M. A high-strength heat-resistant Al-5.7Ni eutectic alloy with spherical Al<sub>3</sub>Ni nano-particles by selective laser melting [J]. Script Materialia, 2021, 203: 114034.
- [7] DING R, DENG J W, LIU X C, WU Y Y, GENG Z W, LI D, ZHANG T M, CHEN C, ZHOU K C. Enhanced mechanical properties and thermal stability in additively manufactured Al-Ni alloy by Sc addition[J]. Journal of Alloys and Compounds, 2023, 934: 167894.
- [8] SUWANPREECHAC, RAKHMONOV JU, CHANKITMUNKONG

- S, PANDEE P, DUNAND D C, LIMMANEEVICHITR C. Ambient- and elevated temperature properties of Sc- and Zr modified Al-6Ni alloys strengthened by Al<sub>3</sub>Ni microfibers and Al<sub>3</sub>(Sc, Zr) nanoprecipitates [J]. Materials Science and Engineering: A, 2022, 841: 142963.
- [9] CHEN X, JIN T, CHEN J, XI W G, CAI Q Z, CHENG J F, JIANG W M. Effect of Zr and Ti addition on solidification microstructure and mechanical properties of Al-4Ni-0.4V alloy[J]. Materials Today Communications, 2025, 44: 111935.
- [10] KWON S Y, SHIN D, MICHI R A, POPLAWSKY J D, WANG H, YANG Y, BAHL S, SHYAM A, PLOTKOWSKI A. Effect of microalloying additions on microstructural evolution and thermal stability in cast Al-Ni alloys[J]. Journal of Alloys and Compounds, 2024, 997: 174810.
- [11] MÁLEK P, JANEČEK M, SMOLA B, BARTUŠKA P, PLEŠTIL J. Structure and properties of rapidly solidified Al-Zr-Ti alloys [J]. Journal of Materials Science, 2000, 35: 2625-2633.
- [12] KNIPLING K E, DUNAND D C, SEIDMAN D N. Precipitation evolution in Al-Zr and Al-Zr-Ti alloys during isothermal aging at  $375-425~^{\circ}\text{C}$  [J]. Acta Materialia, 2008, 56(1): 114-127.
- [13] KNIPLING K E, DUNAND D C, SEIDMAN D N. Precipitation evolution in Al-Zr and Al-Zr-Ti alloys during aging at 450-600 °C [J]. Acta Materialia, 2008, 56(6): 1182-1195.
- [14] 崔忠圻, 覃耀春. 金属学与热处理(第 3 版)[M]. 北京: 机械工业出版社, 2020.

  CUI Z Q, QIN Y C. Metallography and heat treatment (3rd edition)[M]. Beijing: China Machine Press, 2020.
- [15] KNIPLING K, DUNAND D, SEIDMAN D. Nucleation and precipitation strengthening in dilute Al-Ti and Al-Zr alloys[J]. Metallurgical and Materials Transactions A, 2007, 38: 2552-2563.
- [16] 陈志强,胡文鑫,石磊,王玮. 复合稀土与 Al-Ti-B 协同作用对 6061 铝合金微观组织和力学性能的影响[J]. 铸造技术,2022, 43 (10): 897-905.

  CHEN Z Q, HU W X, SHI L, WANG W. Synergistic effect of misch metal and Al-Ti-B on the microstructure and mechanical properties of 6061 aluminum alloy[J]. Foundry Technology, 2022,
- [17] 张鑫,杨成刚,吴杰杰,张嘉祺,杨龙威,管仲达. Ti, Zr 对纯铝组织和性能的复合影响[J]. 铸造技术,2021, 42(9): 754-758.

  ZHANG X, YANG C G, WU J J, ZHANG J Q, YANG L W, GUAN Z D. Combined effects of Ti and Zr on microstructure and property of pure aluminum[J]. Foundry Technology, 2021, 42(9): 754-758.

43(10): 897-905.

[18] 席卫国,陈旭,陈吉,程婧璠,蔡启舟. V 合金化对 Al-9Si 合金凝固组织与力学性能的影响[J]. 铸造技术,2024, 45(3): 279-287. XI W G, CHEN X, CHEN J, CHENG J F, CAI Q Z. Effect of V alloying on the solidification microstructure and mechanical properties of Al-9Si alloy [J]. Foundry Technology, 2024, 45(3): 279-287.

(责任编辑:杨浩雪)