● 试验研究 Experimental Research ● DOI:10.16410/j.issn1000-8365.2024.4009

三元 PbBi₂S₄ 凝固生长与热电性能研究

刘 伟^{1,3},陈 彪²,肖 钰¹

(1. 电子科技大学 材料与能源学院,四川 成都 611731; 2. 西北工业大学 凝固技术国家重点实验室,陕西 西安 710072;3. 西安交通大学 金属材料强度国家重点实验室,陕西 西安 710049)

摘 要: 三元 PbBi₂S₄ 是一种具有本征低晶格热导率的潜力热电材料,但低的电传输性能制约了其热电性能。本工作利用 Bridgman 法制备了高质量的三元 PbBi₂S₄ 晶体铸锭,由于减少晶界密度,降低晶界对载流子传输阻碍,电传输性能大幅度提升。通过优化生长条件获得不同质量的三元 PbBi₂S₄ 晶体铸锭,最优加权载流子迁移率从多晶中 15 cm²/(V·s)提升到 56 cm²/(V·s),使三元 PbBi₂S₄ 晶体铸锭的最大电导率和功率因子分别达到 1 049 S/cm和 4.6 μW/(cm·K²),相比多晶 PbBi₂S₄ 样品分别提高了 850%和~64%。最终,PbBi₂S₄ 晶体铸锭的最大 ZT 值在 773 K 温度下达到 0.61。结果表明,通过凝固生长高质量晶体铸锭能显著优化三元 PbBi₂S₄ 化合物全温区热电性能。

关键词:PbBi₂S₄晶体铸锭;晶界;迁移率;功率因子;ZT值

中图分类号: TB34

文章编号:1000-8365(2024)04-0328-07

Research on the Solid–State Growth and Thermoelectric Properties of Ternary $PbBi_2S_4$ Compound

文献标识码:A

LIU Wei^{1,3}, CHEN Biao², XIAO Yu¹

School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China;
 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China;
 State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China)

Abstract: Ternary PbBi₂S₄ is a potential thermoelectric material with intrinsically low lattice thermal conductivity, but the low electrical transport properties limit its thermoelectric properties. In this work, high-quality ternary PbBi₂S₄ crystal ingots were prepared by the Bridgman method. By reducing the grain boundary density to reduce the carrier transport barrier, the electrical transport properties greatly improved. By optimizing the growth conditions, ternary PbBi₂S₄ crystal ingots of different qualities were obtained. The optimal weighted mobility increases from 15 cm²/(V · s) in the polycrystal to 56 cm²/(V · s), and the maximum electrical conductivity and power factor of the ternary PbBi₂S₄ crystal ingot reach 1 049 S/cm and 4.6 μ W/(cm · K²), respectively. Compared with those of the polycrystalline PbBi₂S₄ sample, the increases are 850% and ~64%, respectively. Finally, the maximum *ZT* value in the PbBi₂S₄ crystal ingot reaches 0.61 at 773 K. The results show that the solidification growth of high-quality crystal ingots can significantly optimize the full-temperature thermoelectric properties of the ternary PbBi₂S₄ compound.

Key words: PbBi₂S₄ crystal ingots; grain boundary; mobility; power factor; ZT values

热电材料是一种能够将热能转化为电能(Seebeck效应)或者运用电能进行制冷(Peltier效应)的环保型能源材料,在能源转换和制冷领域具有广泛的应用潜力^[1-3]。然而,能源转换效率取决于热电材料本身的无量纲优值(ZT),其定义为:

 $ZT = (S^2 \sigma T) / (\kappa_{ele} + \kappa_{lat})$

式中,S、 σ 、T、 κ_{ele} 和 κ_{lat} 分别为Seebeck系数、电导率、 开尔文温度、电子热导率和晶格热导率^[47]。显然,高 效的热电材料应该同时具有高功率因子(power factor, PF)和低热导率(thermal conductivity, κ_{tot}):

$$PF=S^2\sigma$$
 (2)

$$\kappa_{\rm tot} = \kappa_{\rm ele} + \kappa_{\rm lat} \tag{3}$$

收稿日期: 2024-01-09

基金项目:国家自然科学基金(52172236);凝固技术国家重点实验室基金(SKLSP202314);电子科技大学"百人"项目

(1)

作者简介:刘 伟,1995年生,博士.研究方向为三元热电材料技术. Email: Weiliu@stu.xjtu.edu.cn

通讯作者: 陈 彪, 1987 年生, 博士, 教授、博导. 研究方向为轻合金及其复合材料. Email: chen@nwpu.edu.cn

肖 钰,1990年生,博士,教授、博导.研究方向为热电能源材料.Email:xiaoyu@uestc.edu.cn

引用格式:刘伟,陈彪,肖钰.三元 PbBi₂S₄ 凝固生长与热电性能研究[J]. 铸造技术, 2024, 45(4): 328-334.

LIU W, CHEN B, XIAO Y. Research on the solid-state growth and thermoelectric properties of ternary $PbBi_2S_4$ compound [J]. Foundry Technology, 2024, 45(4): 328-334.

但是从以往的研究发现,通过掺杂提高载流子 浓度(carrier density, n)来优化电性能会加剧载流子 间的散射^[89];而能带工程优化Seebeck系数的时候又 会因为有效质量(effective mass, m*)的增加降低载 流子迁移率(carrier mobility, μ)^[10-11];有学者通过精心 设计引入多尺度缺陷来抑制晶格热导率,但是也会 不可避免地损伤其载流子迁移率^[12-13]。这些研究表 明,载流子迁移率的优化受到其他参数的耦合,使 得热电性能的改善复杂且困难。

三元PbBi₂S₄化合物因含有更大地壳丰度和更 低价格的硫元素而受到热电领域的广泛关注[1415]。 此外,在Ohta等^[14]和Cai等^[15]的报道中发现,由于固 有的强晶格非谐性以及界面之间的有效声子散射. 在三元PbBi₂S₄化合物中呈现出了较低的晶格热导 率,表明三元PbBi₂S₄是一种很有潜力的热电材料。 但是较低的载流子迁移率导致PbBi₂S₄不理想的功 率因子,进而限制了其热电性能的进一步提升。目 前,大量研究表明,晶粒越大,晶界密度越小,晶界 对载流子阻碍降低,载流子迁移率越高,功率因子 的优化越明显^[16-17]。Zhao等^[18]就曾制备了高质量的p 型SnSe晶锭,由于缺陷密度降低,室温下的迁移率 高达237 cm²/(V·s),这比同等载流子浓度下的多晶 SnSe提升了18倍,最终导致PF值优化了20倍;再者, 同样具有本征低晶格热导率的p型SnS晶锭载流子 加权迁移率是多晶的58倍,使得最大电导率优化了 45倍,全温区电传输性能大幅提升^[19]。显然,把具有 本征低晶格热导率的材料制备成高质量晶锭可减 少晶界对载流子的阻碍,显著优化电传输性能,进 而达到提升热电性能的目的。

本工作通过Bridgman法制备了高质量的Pb-Bi₂S₄晶体铸锭,并研究了其热电传输性能。通过进 一步优化生长条件获得不同质量的PbBi₂S₄晶体铸 锭,最优加权载流子迁移率从多晶中15 cm²/(V·s)提 升到56 cm²/(V·s),使得最高电导率从124 S/(cm·K²) 提升到1 049 S/(cm·K²),提高了约8.5倍,使其最大 PF值达到4.6 µW/(cm·K²),相比多晶PbBi₂S₄样品优 化了~64%。结合固有的低晶格热导率,PbBi₂S₄晶体 铸锭的最大ZT值在773 K温度下达到0.61,比其多晶 样品提高了~30%。结果表明,通过凝固生长高质量 PbBi₂S₄晶体铸锭可以显著优化热电性能,为PbBi₂S₄

1 实验材料与方法

1.1 实验材料和样品制备 铅块(Pb,纯度99.999%,阿拉丁元素)、硫粉(S,纯

度99.99%,阿拉丁元素)、铋块(Bi,纯度99.999%,阿 拉丁元素)。原料装入玻璃石英管,在低于~10⁴ Torr 的真空度下火焰密封,然后放入马弗炉中,20h内缓 慢加热到1 373 K,并在此温度下保持12 h,最后冷 却至室温。将所得钢锭磨成粉末,在轴向50 MPa 的热压应力(7700X-RHP4)下保持1h,得到~φ15 mm× 10 mm的高致密盘形多晶样品。将所得的~15 g钢锭 磨成粉末,放入带锥形的专用石英管中,在真空下火 焰密封,再经过12h加热到1223K,浸泡10h,在温 度梯度的垂直炉中以0.7 K/h的速度缓慢冷却至 873 K。随后,在炉中自然冷却后获得尺寸为~o11 mmx 40 mm的PbBi₂S₄铸锭1。采用同样的方法,将所得钢 锭磨成粉末,经过12 h加热到1 273 K,浸泡10 h, 然后在温度梯度的垂直炉中以0.7 K/h的速度缓慢 冷却至823 K。随后,在炉中自然冷却后获得尺寸为 $\sim \phi 11 \text{ mm} \times 40 \text{ mm} \text{ bPbBi}_2 S_4 铸锭2_o$

1.2 结构表征

X射线衍射(XRD-Bruker D8 ADVANCE)模式是 由Cu Kα(λ=1.541 8 Å)辐射在反射几何上,在40 kV 和40 mA的衍射仪上工作,并配备位置敏感探测器, 利用衍射软件包(JADE)对材料进行分析。

1.3 热电传输性能

在300~773 K的低压氦气氛下,将多晶和晶体 铸锭样品切成尺寸约为10 mm×4 mm×4 mm的棒状, 利用Cryoall CTA仪同时测量Seebeck系数和电导率。 Seebeck系数和电导率测量的不确定度为5%。将多 晶和铸锭样品切割并抛光成直径约6 mm,厚度约 1 mm的圆形,用于热扩散率(*D*)测量。样品被涂上一 层薄薄的石墨层,以尽量减少Cryoall CLA-1000发射 率法的误差。样品密度(*ρ*)由其尺寸和质量来确定, 用Debye模型估算比热容(*C_p*)。采用Cowan脉冲校正 模型对热扩散系数数据进行分析,利用声子散射的 单带抛物带(single parabolic band, SPB)模型可以估 计出洛伦兹数(*L*)。考虑到*D*、*ρ*、*C_p和L的所有不确定* 度,热导率的不确定度估计在8%以内。计算*ZT*值所 涉及的所有测量的综合不确定度小于20%。

1.4 单带抛物线模型

Pisarenko关系由SPB模型根据式(4~7)计算得出^[9,20-21]:

$$S = \frac{k_{\rm B}}{e} \left[\frac{2F_1(\delta)}{F_0(\delta)} - \delta \right] \tag{4}$$

$$F_{x}(\delta) = \int_{0}^{\infty} \frac{\varepsilon^{x}}{1 + \exp(\varepsilon - \delta)} d\varepsilon$$
 (5)

$$n_{\rm H} = \frac{(2m \cdot k_{\rm B}T)^{3/2}}{2\pi^2 \hbar^3} \frac{F_{1/2}(\delta)}{r_{\rm H}}$$
(6)

$$r_{\rm H} = \frac{3}{4} \frac{F_{1/2}(\delta) F_{-1/2}(\delta)}{[F_0(\delta)]^2} \tag{7}$$

式中, $k_{\rm B}$ 为玻尔兹曼常数;e为电子电荷; δ 为约化的 费米能量; $F_{\rm x}(\delta)$ 为费米积分; $n_{\rm H}$ 为载流子浓度;m*为 态密度(DOS)有效质量;T为温度; \hbar 为约化的普朗克 常数; $r_{\rm H}$ 为霍尔系数。

1.5 加权迁移率

基于SPB模型和测量的电导率(σ)和塞贝克系数(S),根据式(5)和式(8,9)可以得到加权迁移率 (μ_w)^[20-21]:

$$\mu_{\rm W} = \frac{3\sigma}{8\pi e F_0(\delta)} \left(\frac{h^2}{2m_{\rm s}k_{\rm B}T}\right)^{3/2} \tag{8}$$

$$S = \pm \frac{k_{\rm B}}{e} \left[\frac{(r+5/2)F_{r+3/2}(\delta)}{(r+3/2)F_{r+1/2}(\delta)} - \delta \right] \tag{9}$$

式中,h为普朗克常数;m。为自由电子的质量;r为散 射因子,其值为-1/2。这里假设载流子散射主要是由 声子引起的。

1.6 Debye模型

考虑到声子和晶格热膨胀的贡献,总热容C_{ptot}(T) 可以表示为^[22]:

$$C_{\text{p,tot}}(T) = C_{\text{p,ph}}(T) + C_{\text{p,D}}(T)$$
(10)

式中, $C_{p,ph}(T)$ 和 $C_{p,D}(T)$ 分别将声子和晶格膨胀的贡献 赋予 $C_{p,tot}(T)$ 。基于弹性波近似,并考虑热膨胀对热容 的影响, $C_{n,ph}(T)$ 和 $C_{n,D}(T)$ 可以表示为:

$$C_{\text{p,ph}}(T/\theta_{\text{D}}) = 9R \left(\frac{T}{\theta_{\text{D}}}\right)^{3} \int_{0}^{\theta_{\text{D}}} \frac{x^{4}e^{x}}{(e^{x}-1)^{2}} dx \qquad (11)$$

$$C_{\text{p,ph}}(T) = C_{\text{elc,D}}(T) + C_{\text{ph,D}}(T) = \frac{9BT\alpha^2}{10^6\rho}$$
 (12)

$$x = \hbar \omega / k_{\rm B} T \tag{13}$$

式中, θ_D 为Debye温度;R为气体常数(8.314 J·mol⁻¹·K⁻¹); ω 为声子振动频率;B为等温体模量; α 为热膨胀线性 系数; ρ 为样品密度。

1.7 洛伦兹常数的计算

与严格的单带抛物线和多波段模型计算相比,

基于SPB模型估计洛伦兹数的误差在10%以内。L可 以根据式(5)和(14~16)得到^[23-24]:

$$L = \left(\frac{k_{\rm B}}{e}\right)^2 \left\{ \frac{(r+7/2)F_{r+5/2}(\delta)}{(r+3/2)F_{r+1/2}(\delta)} - \left[\frac{(r+5/2)F_{r+3/2}(\delta)}{(r+3/2)F_{r+1/2}(\delta)}\right]^2 \right\}$$
(14)

$$S = \frac{k_{\rm B}}{e} \left[\frac{(r+5/2)F_{r+3/2}(\delta)}{(r+3/2)F_{r+1/2}(\delta)} - \delta \right]$$
(15)

$$\delta = \frac{E_{\rm f}}{k_{\rm B} T} \tag{16}$$

式中,r为散射因子;S为塞贝克系数;Ef为费米能量。

2 实验结果及讨论

众所周知,具有高密度晶界的多晶热电材料,能 有效抑制晶格热导率,但是其载流子的迁移率往往 也会受到晶界的强烈散射,这对于提升其热电性能 极为不利[25-27]。相比之下,通过制备高质量的晶体铸 锭减少材料内部的晶界密度,是提升热电材料全温 区性能最有效的方法之一^[28-29]。图1a为Bridgman法制 备晶体铸锭的示意图,如图所示用带锥形的专用石 英管,来实现逐渐降温而有序生长的效果。实验中, 从石英管的底部降温,使熔体逐渐凝固。由于降温速 率的控制和石英管的特定形状,凝固过程中尽量保 证只有一个晶面成长,从而最终得到是高质量的晶 体铸锭。随后,按照图1b所示的面内方向切割获取热 电测试所需的样品。值得注意的是,已有的实验结果 表明,PbBi₂S₄并不像SnSe^[18]和SnS^[19]那样具有很强的 各向异性,从后面的晶体结构也可以看出这点。图1c 展示了成功制备的高质量PbBi₂S₄晶体铸锭以及热电 测试的样品。PbBi₂S₄铸锭表面存在少量的气孔,这可 能是由于熔体中存在一定数量的气体,降温过程中 溶解气体不易排出导致。但是,晶体铸锭内部热电测 试的样品未观察到明显的裂纹和气孔、反映出很高 的结晶度。

根据图2a中展示的PbBi₂S₄多晶和晶体铸锭的 XRD图片,发现无论是多晶还是晶体铸锭,XRD峰

图 1 凝固生长 PbBi₂S₄ 晶体铸锭:(a) Bridgman 法制备晶体铸锭示意图;(b) PbBi₂S₄ 晶体铸锭沿平面外方向切割示意图; (c) PbBi₂S₄ 晶体铸锭以及用于热电测试的样品

Fig.1 Solid-state growth PbBi₂S₄ crystal ingot: (a) schematic diagram of the crystal ingot preparation by the Bridgman method;
 (b) schematic diagram of the PbBi₂S₄ crystal ingot cut along the out-of-plane direction; (c) PbBi₂S₄ crystal ingot and samples for thermoelectric performance measurements

都很好地指示了PbBi₂S₄相。为了进一步了解PbBi₂S₄相的结构机制,给出了PbBi₂S₄的晶体结构示意图(图 2b)。Bi₂S₃是由Bi₄S₆排列形成的条带状结构,层与层之间会存在强烈的声子散射,其空间群为Pnma^[30],PbS则为高度对称的立方晶体结构^[31]。当二者按照 1:1比例混合获得新的三元化合物PbBi₂S₄时,形成 断裂的NaCl型和Bi₂S₃型条带结构,其空间群为Pn-ma^[141532],此外,Bi-S八面体中具有明显的立体化学 孤对效应。事实上,PbBi₂S₄这种复杂的晶体结构更 容易引起强晶格非谐性进而导致较低的晶格热 导率。

为了探索凝固生长晶体铸锭在减少晶界密度后 (图3a)对PbBi₂S₄热电性能的改善作用,测量了三元 PbBi₂S₄多晶和晶体铸锭的电输运性能。从图3b可以 看出,PbBi₂S₄多晶和晶体铸锭均表现出简并半导体 的行为,最重要的是,制备高质量的晶体铸锭显著 提高了全温区的电导率。300 K时,PbBi₂S的电导率

从多晶的124 S/cm增加到铸锭1的756 S/cm;773 K 时,电导率从53 S/cm增加到201 S/cm。优化生长条 件后获得了更高质量的晶体铸锭2,300 K和773 K下 的最优电导率达到1049和254 S/cm, 分别提升了约 8.5倍和4.8倍。电导率的大幅提升主要是由于晶体铸 锭明显降低了晶界对载流子的阻碍,载流子迁移率 增加,如图3a所示。图3b为测量的PbBi₂S₄多晶和晶体 铸锭与温度依赖的Seebeck系数,由此发现所有样品 的Seebeck系数均为负,说明PbBi₃S₄多晶和晶体铸锭 是电子为主要载流子的n型传导特性。此外,PbBi₂S₄ 多晶和晶体铸锭与温度依赖的Seebeck系数表现出 简并半导体的行为,这与电导率的温度依赖性一致。 基于单带抛物线模型拟合Seebeck系数与电导率的 关系,以便初步评估有效质量在PbBi₂S₄多晶和晶体 铸锭中的情况,并把结果展示在图3d中。晶体铸锭的 载流子有效质量略微增加,表明晶体铸锭中较高的 载流子浓度可能是导致Seebeck系数降低的原因。

图 3 PbBi₂S₄多晶和晶体铸锭的热电性能:(a)多晶和晶体铸锭中载流子散射示意图;(b)电导率;(c) Seebeck 系数;(d) Seebeck 系数和电导率的关系;(e) PF 值;(f) 加权迁移率

Fig.3 The thermoelectric properties of PbBi₂S₄ polycrystals and crystal ingots: (a) schematic diagram of carrier scattering in polycrystals and crystal ingots; (b) electrical conductivity; (c) Seebeck coefficient; (d) relationship between the Seebeck coefficient and electrical conductivity; (e) PF values; (f) weighted mobility

最终,结合输运性优化后实现的大电导率,以及相对 有利的Seebeck系数,PbBi₂S4晶体铸锭的功率因子 在整个温度范围内实现了大幅度提升,如图3e所示。 其中,PbBi₂S₄铸锭2在300和773 K下的PF值分别为 2.4和4.6 µW/(cm·K²),这比多晶PbBi₂S₄样品的1.2和 2.8 μW/(cm·K²) 分别提升了~100%和~64%。另外, PbBi₂S₄铸锭2的电传输性能明显优于铸锭1,铸锭1在 300和773 K下的PF值分别为1.9和4.1 µW/(cm·K²), 这是因为铸锭2在更宽的生长温度下促使了晶粒长 大,晶界更少,晶界对载流子阻碍较弱,同时也反 映出更高的结晶度。为了更直观地评估凝固生长晶 体铸锭后对PbBi₂S₄材料体系中载流子输运行为的 有利作用,研究给出了PbBi₂S₄多晶和铸锭的加权 迁移率的变化情况,如图3f所示。由图发现PbBi₂S₄ 晶体铸锭的加权迁移率得到显著改善,最优加 权载流子迁移率从多晶中15 cm²/(V·s) 提升到 56 cm²/(V·s),提高了约3.7倍。除此之外,加权迁移 率与霍尔载流子迁移率(μ_H)的关系为:

$$\mu_{\rm W} \approx (m^*/m_{\rm e})^{1.5} \mu_{\rm H} \tag{17}$$

式中,*m*。为电子质量^[33]。上述结果表明,PbBi₂S₄晶体 铸锭的载流子有效质量变化不明显,这就意味着制 备晶体铸锭后霍尔载流子迁移率也得到了优化。

PbBi₂S₄的热输运相关特性如图4所示,包括热 扩散系数、比热容、洛伦兹常数、电子热导率、总热 导率和晶格热导率。从图4d中可以看出,与多晶Pb-Bi₂S₄相比,晶体铸锭表现出更高的 κ_{de} 值,这主要源于 电输运性能的显著增强。如图4e所示,PbBi₂S₄多晶的 κ_{tot} 值由0.65 W/(m·K)增加到铸锭2的0.87 W/(m·K), κ_{tot}值的增加来源于电子导热贡献的增加。此外,通 过从总热导率中减去电子热导率来估算晶格热导率 与温度的相关性,如图4f所示。由于界面之间的有 效声子散射和复杂晶体结构引起的强晶格非谐性 导致三元PbBi₂S₄多晶和晶体铸锭都表现出了较低 的晶格热导率^[1415]。从图4f中还可观察到,PbBi₂S₄晶 体铸锭的κ_{lat}值明显低于PbBi₂S₄多晶,其中,室温κ_{lat} 值从多晶中0.57 W/(m·K)降低到0.14 W/(m·K)。κ_{lat}值 的减少是由于凝固生长过程中硫元素挥发形成大量 空位引起的点缺陷散射增强。

通过对比PbBi₂S₄多晶和晶体铸锭的平均功 率因子(PF_{ave})和最大功率因子(PF_{max})发现,如图5a 所示,PbBi₂S₄多晶样品的PF_{ave}值和PF_{max}值分别为 2.2和2.8 µW/(cm·K²),制备成高质量晶体铸锭后,铸 锭2的PF_{ave}值和PF_{max}值增加到3.6和4.6 µW/(cm·K²)。 其中,铸锭2的PF_{ave}值和PF_{max}值都提升了~64%。综上 所述,将具有本征低晶格热导率的PbBi₂S₄化合物制 备成高质量晶体铸锭,实现了全温区热电传输性能 的显著优化。为了进一步直观表现出PbBi₂S₄中微观 结构对载流子和声子散射的强弱,对比了PbBi₂S₄晶体 铸锭和多晶样品的品质因子*B*,具体关系如下^[34,35]:

$$B=9\frac{\mu_{\rm W}}{\kappa_{\rm lat}} \left(\frac{T}{300}\right)^{5/2} \tag{18}$$

从图5b的结果可以看出,通过凝固生长获得的 高质量三元PbBi₂S₄晶体铸锭可实现品质因子B在全 温区显著提高。提高的B值表明,在PbBi₂S₄晶体铸锭 中微观缺陷对载流子的散射比声子要弱,尤其是铸 锭2,这更有利于最终性能的优化。如图5c所示,由于

图 4 PbBi₂S₄多晶和晶体铸锭的热电性能:(a) 热扩散系数;(b) 比热容;(c) 洛伦兹常数;(d) 电子热导率;(e) 总热导率; (f) 晶格热导率

Fig.4 Thermoelectric properties of the PbBi₂S₄ polycrystal and crystal ingot: (a) thermal diffusivity; (b) heat capacity; (c) Lorenz number; (d) electronic thermal conductivity; (e) total thermal conductivity; (f) lattice thermal conductivity

图 5 PbBi₂S₄多晶和晶体铸锭的热电性能:(a) 平均 PF 值和最大 PF 值;(b) 品质因子 B, B 的单位为 cm²·V⁻¹·s⁻¹/(W·m⁻¹·K⁻¹); (c) ZT 值;(d) 平均 ZT 值和最大 ZT 值

Fig.5 The thermoelectric properties in PbBi₂S₄ polycrystal and crystal ingot: (a) the average PF values and maximum PF values; (b) the quality factor *B*, the unit of *B* is $\text{cm}^2 \cdot \text{V}^{-1} \cdot \text{s}^{-1}/(\text{W} \cdot \text{m}^{-1} \cdot \text{K}^{-1})$; (c) *ZT* values; (d) the average *ZT* values and maximum *ZT* values

其固有的低晶格热导率以及大幅提升的功率因子, 在PbBi₂S₄晶体铸锭中实现了*ZT*值的显著优化。尤 其是PbBi₂S₄晶体铸锭2在773 K下的最大*ZT*值达 到0.61,比其多晶样品的0.47提高了~30%。再次对比 PbBi₂S₄多晶和晶体铸锭的平均*ZT*值和最大*ZT*值, 如图5d所示,发现*ZT*_{ave}值从多晶的0.23增加到铸 锭2的0.31,提高了~35%,由此可以确定,在具有 本征低晶格热导率的材料中实现高载流子迁移率 是获得优异热电性能的关键。根据目前的实验结 果可以预测到,若进一步对PbBi₂S₄晶体铸锭的载 流子浓度和有效质量进行调控,其PF值和*ZT*值将 会再次提升。

3 结论

(1)通过凝固生长把具有本征低晶格热导率的 三元PbBi₂S₄化合物制备成高质量的晶体铸锭,减少 了材料内部的晶界密度,有效降低了对载流子的阻碍,可实现全温区电传输性能的明显优化。

(2)通过进一步优化生长条件获得更高质量的
PbBi₂S₄晶体铸锭,最优加权载流子迁移率从多晶中
15 cm²/(V·s)提升到56 cm²/(V·s),最高电导率从
124 S/(cm·K²)增加到1049 S/(cm·K²),提升了约8.5
倍,最佳PF值达到4.6 μW/(cm·K²),提高了~64%。

(3)凭借优化的电传输性能和本征低晶格热导率,PbBi₂S₄晶体铸锭的最大*ZT*值在773 K温度下达到0.61,比其多晶样品提高了~30%。

参考文献:

- WU D, PEI Y, WANG Z, et al. Significantly enhanced thermoelectric performance in n-type heterogeneous BiAgSeS composites[J]. Advanced Functional Materials, 2014, 24(48): 7763-7771.
- [2] YANG L, CHEN Z G, DARGUSCH M S, et al. High performance thermoelectric materials: Progress and their applications [J]. Advanced Energy Materials, 2017, 8(6): 1701797.
- [3] LIU Z, HONG T, XU L, et al. Lattice expansion enables interstitial doping to achieve a high average ZT in *n*-type PbS[J]. Interdisciplinary Materials, 2023, 2(1): 161-170.
- [4] XIAO Y, LIU W, ZHANG Y, et al. Rationally optimized carrier effective mass and carrier density leads to high average *ZT* value in *n*-type PbSe[J]. Journal of Materials Chemistry A, 2021, 9(40): 23011-23018.
- [5] LIU W, HONG T, DONG S Z, et al. Synergistically optimizing carrier and phonon transport properties in n-type PbTe through I doping and SnSe alloying[J]. Materials Today Energy, 2022, 26: 100983.
- [6] XU L, XIAO Y, WANG S, et al. Dense dislocations enable high-performance PbSe thermoelectric at low-medium temperatures[J]. Nature Communications, 2022, 13(1): 6449.
- [7] 金敏. Cu掺杂SnSe晶体生长及热电性能研究[J]. 铸造技术, 2023, 44(1): 49-53.
 JIN M. Growth of Cu-doped SnSe crystal and its thermoelectric properties[J]. Foundry Technology, 2023, 44(1): 49-53.
- [8] ZHANG G, LI B. Impacts of doping on thermal and thermoelectric properties of nanomaterials[J]. Nanoscale, 2010, 2(7): 1058-1068.
- [9] PAN L, MITRA S, ZHAO L D, et al. The role of ionized impurity scattering on the thermoelectric performances of rock salt AgPb_m-SnSe_{2'm} [J]. Advanced Functional Materials, 2016, 26(28): 5149-5157.

- [10] ZHAO L D, WU H J, HAO S Q, et al. All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance[J]. Energy & Environmental Science, 2013, 6(11): 3346-3355.
- [11] JAWORSKI C M, KULBACHINSKII V, HEREMANS J P. Resonant level formed by tin in Bi₂Te₃ and the enhancement of room-temperature thermoelectric power [J]. Physical Review B, 2009, 80(23): 233201.
- [12] QIN Y, XIAO Y, ZHAO L D. Carrier mobility does matter for enhancing thermoelectric performance [J]. APL Materials, 2020, 8: 010901.
- [13] LIU Y, ZHAO L D, ZHU Y, et al. Synergistically optimizing electrical and thermal transport properties of BiCuSeO via a dual-doping approach[J]. Advanced Energy Materials, 2016, 6(9): 1502423.
- [14] OHTA M, CHUNG D Y, KUNII M, et al. Low lattice thermal conductivity in Pb₃Bi₆Se₁₄, Pb₃Bi₂S₆, and PbBi₂S₄: Promising thermoelectric materials in the cannizzarite, lillianite, and galenobismuthite homologous series [J]. Journal of Materials Chemistry A, 2014, 2(47): 20048-20058.
- [15] CAI F, DONG R, SUN W, et al. Pb_mBi₂S_{3+m} homologous series with low thermal conductivity prepared by the solution-based method as promising thermoelectric materials[J]. Chemistry of Materials, 2021, 33(15): 6003-6011.
- [16] ZHUANG H L, PEI J, CAI B, et al. Thermoelectric performance enhancement in BiSbTe alloy by microstructure modulation via cyclic spark plasma sintering with liquid phase [J]. Advanced Functional Materials, 2021, 31(15): 2009681.
- [17] CAI B, ZHUANG H L, PEI J, et al. Spark plasma sintered Bi-Sb-Te alloys derived from ingot scrap: Maximizing thermoelectric performance by tailoring their composition and optimizing sintering time[J]. Nano Energy, 2021, 85: 106040.
- [18] ZHAO L D, TAN G, HAO S, et al. Ultrahigh power factor and thermoelectric performance inhole-doped single-crystal SnSe [J]. Science, 2016, 351(6269): 141-144.
- [19] HE W, QIN B, ZHAO L D. Predicting the potential performance in P-Type SnS crystals via utilizing the weighted mobility and quality factor[J]. Chinese Physics Letters, 2020, 37: 087104.
- [20] ZHAN S, HONG T, QIN B, et al. Realizing high-ranged thermoelectric performance in PbSnS₂ crystals [J]. Nature Communications, 2022, 13(1): 5937.
- [21] KANG S D, SNYDER G J. Charge-transport model for conducting polymers[J]. Nature Materials, 2017, 16(2): 252-257.
- [22] DELAIRE O, MAY A F, MCGUIRE M A, et al. Phonon density of states and heat capacity of La_{3x}Te₄[J]. Physical Review B, 2009, 80 (18): 184302.

- [23] ZHAO L D, LO S H, HE J, et al. High performance thermoelectrics from earth-abundant materials: Enhanced figure of merit in PbS by second phase nanostructures[J]. Journal of the American Chemical Society, 2011, 133(50): 20476-20487.
- [24] 廖义燕,李盼盼,王泽高,等. 通过超快烧结法制备高性能硒化 银热电材料[J]. 铸造技术,2023,44(6): 576-582.
 LIAO Y Y, LI P P, WANG Z G, et al. Preparation of high-performance silver selenide thermoelectric materials by an ultrafast sintering method[J]. Foundry Technology, 2023, 44(6): 576-582.
- [25] MEDLIN D L, SNYDER G J. Interfaces in bulk thermoelectric materials: A review for current opinion in colloid and interface science [J]. Current Opinion in Colloid & Interface Science, 2009, 14(4): 226-235.
- [26] ROWE D M, SHUKL V S, SAVVIDES N. Phonon scattering at grain boundaries in heavily doped fine-grained silicon-germanium alloys[J]. Nature, 1981, 290(5809): 765-766.
- [27] MUN H, CHOI S M, LEE K H, et al. Boundary engineering for the thermoelectric performance of bulk alloys based on bismuth telluride[J]. ChemSusChem, 2015, 46(14): 2312-2326.
- [28] SAITO W, HAYASHI K, HUANG Z, et al. Enhancing the thermoelectric performance of Mg₂Sn single crystals via point defect engineering and Sb doping [J]. ACS Applied Materials & Interfaces, 2020, 12(52): 57888-57897.
- [29] ZHANG W, LIU X, TIAN Z, et al. High thermoelectric performance of large size Bi₂Te₂₇Se₀₃ alloy ingots[J]. Journal of Electronic Materials, 2023, 52(10): 6682-6689.
- [30] GUO J, YANG J, GE Z H, et al. Realizing high thermoelectric performance in earth-abundant Bi₂S₃ bulk materials via halogen acid modulation[J]. Advanced Functional Materials, 2021, 31(37): 2102838.
- [31] LIU W, XU L, XIAO Y, et al. Strategies to advance earth-abundant PbS thermoelectric[J]. Chemical Engineering Journal, 2023, 465: 142785.
- [32] SAVORY C N, GANOSE A M, SCANLON D O. Exploring the PbS-Bi₂S₃ series for next generation energy conversion materials [J]. Chemistry of Materials, 2017, 29(12): 5156-5167.
- [33] SNYDER G J, SNYDER A H, WOOD M, et al. Weighted mobility[J]. Advanced Materials, 2020, 32(25): 2001537.
- [34] CHASMAR R P, STRATTON R. The thermoelectric figure of merit and its relation to thermoelectric generators? [J]. Journal of Electronics and Control, 1959, 7(1): 52-72.
- [35] TAN G, ZHAO L D, KANATZIDIS M G. Rationally designing high-performance bulk thermoelectric materials[J]. Chemical Reviews, 2016, 116(19): 12123-12149.