DOI: 10.16410/j.issn1000-8365.2019.04.007

SiC-Al₃Ti 协同增强 7075 铝基复合材料搅拌工艺 优化研究

陈诚诚,张文达,卫振华,徐 宏 (中北大学材料科学与工程学院,山西太原 030000)

摘 要:采用液态搅拌铸造法制备 SiC-Al₃Ti 协同增强 7075 铝基复合材料。利用 OM、XRD、SEM、直读光谱仪和布氏硬度计,通过正交试验分析了搅拌温度、搅拌速度和搅拌时间等对复合材料中 SiC 和 Al₃Ti 分布、收得率及复合材料 硬度的影响。结果表明,SiC-Al₃Ti 协同增强 7075 铝基复合材料的最佳搅拌温度为 800 ℃,搅拌速度为 450 r/min,搅拌 时间为 20 min。

关键词:铝基复合材料;液态搅拌;7075铝合金;正交试验

中图分类号:TB331

文章编号:1000-8365(2019)04-0360-05

Optimization Study on Stirring Process for SiC-Al₃Ti Synergistically Enhanced 7075 Aluminum Matrix Composites

CHEN Chengcheng, ZHANG Wenda, WEI Zhenhua, XU Hong

(School of Materials Science and Engineering, North University of China, Taiyuan 030000, China)

Abstract: The SiC-Al₃Ti co-enhanced 7075 aluminum matrix composites were prepared by liquid stirring casting method. The effect of stirring temperature, stirring speed and stirring time on distribution and yielding rate of SiC and Al₃Ti and the hardness of composites were analyzed by using OM, XRD, SEM, direct reading spectrometer and bush hardness tester. The results show that the optimum stirring temperature, stirring speed, and stirring time are 800 $^{\circ}$ C, 450 r/min, and 20 min, respectively.

Key words: aluminum matrix composites; liquid stirring; 7075 aluminum alloy; orthogonal experiment

文献标识码:A

7075 铝合金作为高强度铝合金之一,具有高的 比强度和抗应力--断裂等综合性能,广泛应用于航 空、航天、船舶等工业^[1,2]。采用 SiC 等增强颗粒的复 合材料保持了各种增强材料的优点,同时改善了基 体合金的性能,提高了材料的实用性,已成为材料 科学研究的重要领域^[3,4]。在过去十几年,由于搅拌 铸造法具有设备简单、操作容易、成本低廉、对颗粒 种类及尺寸适应范围广、工艺流程短、可用于规模 化生产等优点,成为了制备颗粒增强铝基复合材料 最有效的方法之一^[5,6]。搅拌铸造法又分为液态搅拌 铸造法和半固态搅拌铸造法。半固态搅拌技术是金 属处于半固态的情况下加入颗粒,导致颗粒很难均 匀的分布到金属中,且团聚现象严重^[7]。液态搅拌铸 造法是金属在完全液态的条件下加入颗粒,在搅拌 的过程中可以很好地将 SiC 颗粒均匀的分布在液态 金属中^[8]。提高搅拌温度、搅拌速度及延长搅拌时 间,对快速制备复合材料有利,但可能会导致 SiC 和 基体发生有害的界面反应;搅拌速度过低及搅拌时 间不足,不利于 SiC 颗粒均匀分散于基体合金 中^[9,10]。因此,有必要对液态搅拌铸造法制备铝基复 合材料工艺进行优化。液态搅拌铸造法制备铝基复 合材料的影响因素较多,正交试验是研究多因素实 验的有效工具。本文采用不同的搅拌温度、搅拌速度 和搅拌时间制备 SiC-Al₃Ti /7075 复合材料,并研究 搅拌参数对 SiC 和 Al₃Ti 颗粒在 7075 合金中的分 布及对硬度大小的影响,获得最佳的搅拌工艺参数, 从而为复合材料的实际应用提供借鉴。

1 试验材料与方法

1.1 增强体复合粉末预制块制备

试验用 Al 粉(平均粒径 500 μm)、SiC 粉(平均 粒径 800 nm)、Ti 粉(平均粒径 500 μm)按质量比 5:4:3 配制复合粉末,采用行星式球磨机进行机械混

收稿日期: 2018-11-27

作者简介:陈诚诚(1990-),陕西铜川人,硕士生.研究方向:高性 能铝合金及其复合材料.电话:15934117813, E-mail:15934117813@163.com

通讯作者:张文达(1976-),河南信阳人,副教授.研究方向:高性 能铝合金及其复合材料.电话:0351-3921264, E-mail:zwdno@139.com

合,球磨转速 230 rpm,球磨时间 8 h,然后用压片机 (压力 1 MPa)压成尺寸为 ϕ 10 mm×12 mm 的圆柱体 试样。

1.2 复合材料制备

采用液态搅拌法制备复合材料,7075 合金作为 基体合金,主要化学成分w(%)为:5.81 Zn、1.63 Cu、 2.30 Mg、0.261 Fe、0.273 Si、0.005 2 Ti,余量 Al。选 取搅拌温度、搅拌速度和搅拌时间作为正交试验的 主要考察因素,选用[$L_9(3^4)$]正交表设计正交实验,以 SiC 收得率、Al₃Ti 收得率和复合材料硬度为实验 结果,收得率为(实际含量–基体合金含量)/理论 含量。表1为正交试验因素水平表。

表 1 正交试验因素水平表 Tab.1 Orthogonal test factor level table

水平	因素				
	A 搅拌温度 /℃	B 搅拌速度 /r ⋅ min⁻¹	C 搅拌时间 /min		
1	750	280	5		
2	800	450	10		
3	850	710	20		

7075 合金采用高频感应电炉(15 kW)和高纯石 墨坩埚熔化,采用自制搅拌装置按实验方案将相同 质量的9组预制块(每组预制块加入量 24 g)分别 加入到给定实验条件下的7075(500 g)合金熔体中, 保温5 min 后采用六氯乙烷进行精炼,静置10 min 后浇铸到预热250℃的金属型模具中(铸型尺寸为 4 cm×9 cm×13 cm 的长方体)。

1.3 分析测试

组织观察用金相试样经常规研磨抛光后,采用 凯勒试剂腐蚀。采用金相显微镜对金相试样进行观 察分析。使用场发射扫描电镜进行组织和显微成分 分析(EDS)。采用多晶体 X 射线衍射(电压 40 kv,电 流 100 mA)进行物相分析。在直读光谱仪上进行化 学成分分析,为了准确反映复合材料的成分数据, 测试按一定间隔测量 3 个点,取平均值。采用布氏 硬度计根据 GB/T231-1999 进行硬度测试,其中载 荷为 250 kgf,加载时间为 30 s,每组合金硬度值取 3 个试样的平均值,每个试样测试时按固定间隔测量 7 个硬度值,取平均值,测量结果见表 2。

2 实验结果与分析

2.1 显微组织分析

图 1 为不同搅拌工艺下复合材料的金相组织。 通过 XRD 分析并结合文献[11]可确定复合材料中 主要含有 Al 相、Al₃Ti 相、Mg₃₂ (Al,Zn)₄₉ 相和 SiC 相。7075 合金基体上分布着一定数量的黑色和灰色 颗粒,通过 EDS 定量分析表明,黑色颗粒的成分组

表 2 正交试验及实验结果 Tab.2 Orthogonal test and experimental results

组别 —		因素		SiC 收得 Al ₃ Ti 收得		硬度
	А	В	С	率(%)	率(%)	(HB)
1	750	280	5	6.25	34.00	81.3
2	750	450	10	22.08	47.69	84.4
3	750	710	20	52.90	69.69	85.9
4	800	280	10	13.25	42.25	82.5
5	800	450	20	61.50	74.69	88.7
6	800	710	5	15.25	39.75	83.9
7	850	280	20	15.75	67.06	82.7
8	850	450	5	19.67	43.31	84.6
9	850	710	10	52.16	58.63	81.3

成为 C 和 Si, 为 SiC。灰色颗粒成分组成为 Al 和 Ti,原子比接近 Al₃Ti 相。

可以看出,搅拌参数对加入到熔体中 SiC 和 Al₃Ti 分布和团聚有很大的影响。其中,当搅拌因素 均取最小值时,复合材料基体上增强体颗粒团聚严 重。随着搅拌因素各水平值增加,增强体团聚程度减 弱,增强体均匀分散程度得到改善,SiC 和 Al₃Ti 颗 粒的链、环以及团聚体在铝液中将会被打碎,有助于 SiC 和 Al₃Ti 颗粒在铝液中的分散。在图 1(e)中,SiC 和 Al₃Ti 颗粒在铝液中的分散。在图 1(e)中,SiC 和 Al₃Ti 的分布相对均匀,且团聚尺寸和数量减 少^[12]。此外,只有当搅拌速度和搅拌温度都适中时, 才可以有效控制夹渣、气孔等铸造缺陷的生成,最终 获得具有优异性能的铝基复合材料。

2.2 机械搅拌工艺对复合材料中 SiC 和 Al₃Ti 收得 率的影响

由于 SiC 和铝熔体润湿性差及其密度差异较大 等原因,增强体 SiC 很难加入到铝熔体中^[13],添加量 和最佳复合材料中实际测试值差异较大。图 2 为通 过直读光谱仪测定并计算的 9 组不同搅拌工艺下 SiC 和 Al₃Ti 收得率的变化柱状图。可以看出,搅拌 工艺不同,复合材料中 SiC 和 Al₃Ti 收得率不同,但 SiC和 Al₃Ti 收得率变化趋势一致,即 SiC 收得率增 加,Al₃Ti 收得率也增加。因此,仅以 SiC 收得率为指 标进行分析。以 SiC 收得率为指标对表 2 中的实验 结果进行极差分析,结果见表 3,k_i 是表 2 中任一列 上因素取水平 i 时所得试验结果的算术平均值;R 表示极差, $R=\max\{k_1,k_2,k_3\}-\min\{k_1,k_2,k_3\}$ 。由于极 差值大小反映了该因素对实验指标影响大小,极差 值越大,表示该因素对试验指标的影响也就越大。由 表3可得,R_C>R_B>R_A,即搅拌时间是造成熔体中碳 化硅含量不同的主要影响因素,其次是搅拌速度和 搅拌温度。为了得到 SiC 收得率最高的样品,选取各 因素中 SiC 收得率最高对应的 k_1, k_2, k_3 水平,得到 最优的试验方案为 C₃B₃A₃。

图 3 是各因素水平对 SiC 收得率影响的趋势 图。可以看出, SiC-Al₃Ti/7075 复合材料的 SiC 收 得率随搅拌温度的升高、搅拌速度的增加和搅拌 时间的增加而升高。在方案 C₃B₃A₃ 条件下,

图 2 不同搅拌工艺下(SiC-Al₃Ti)/7075 铝基复合材料中的 SiC 和 Al₃Ti 收得率的变化

4 5 6 Group number

3

Fig.2 Variation of yield of SiC and Al₃Ti in (SiC-Al₃Ti)/7075 aluminum matrix composites under different stirring processes

Fig.3 The trend chart of influence of factor level on SiC yield

SiC-Al₃Ti/7075 复合材料中,SiC 收得率达到最高。 然而选择过高的搅拌温度和搅拌速度,增大能耗, 增加成本。尤其是合金熔化温度达到 850 ℃以上, 熔化的合金在生产实践中不现实,而且过高的温度 加剧合金的氧化烧损和吸气增加等铸锭缺陷^[14]。

2.3 机械搅拌工艺对复合材料硬度的影响

以硬度为考核指标对表 2 中的实验结果进行 极差分析。表 4 为硬度极差分析结果。可知, R_B > R_c > R_A ,即搅拌因素对试样硬度的影响主次顺序为 B>C>A。图 4(a)和(b)为 SiC-Al₃Ti/7075 复合材料 中硬度值随搅拌温度和搅拌速度的变化图,均存在 一最佳值,低于或高于这一最佳值布什硬度值都出 现下降趋势,而图 4(c)中复合材料硬度随搅拌时间 的增加先减少后增加。因此,以硬度为指标优化得 到的液态搅拌法制备的 SiC-Al₃Ti/7075 复合材料最 佳工艺方案为 A₂B₂C₃。结合表 3 分析,若选择 A₂ 和 B₂,SiC 收得率比选择 A₃ 和 B₃ 降低了 27.16%和 9.02%;若选择 A₃ 和 B₃,试样硬度值比选择 A₂ 和 B₂ 降低了 2.59%和 2.56%。为了获得具有硬度高的复 合材料,所以选择 A₂ 和 B₂,最后确定的最优方案为 A₂B₂C₃,即本实验中的第 5 组方案。

机械搅拌工艺因素及其水平对复合材料组织 和性能的影响是复杂的。随着搅拌温度的升高,加 剧了搅拌过程中铝液的氧化吸气,增加了复合材料 中的氧化夹杂和气孔等铸造缺陷,对 SiC 和 Al₃Ti 颗粒的分布产生不利影响;搅拌速度的增加,剪切 速率越大,搅拌器附近产生的旋涡越大,熔体容易飞 溅,容易产生较多的气孔,不利于 SiC 和 Al₃Ti 在复 合材料中的分布,影响复合材料中 SiC 和 Al₃Ti 的 含量;搅拌时间的增加可以改善 SiC 和 Al₃Ti 颗粒 在复合材料中的分布,团聚现象减少,复合材料中 SiC 和 Al₃Ti 的含量增加^[15]。SiC 和 Al₃Ti 颗粒的加 入提高位错滑移阻力,使复合材料的硬度提高,但因 在不同的搅拌工艺下制备的复合材料中 SiC 和 Al₃Ti 颗粒含量不同和分布均匀性,影响了复合材料 的硬度。因此,优化搅拌工艺可以增加复合材料中 SiC 和 Al₃Ti 颗粒含量、促进增强颗粒均匀分布和提 高复合材料的硬度。综上所述,可以确定优化的搅拌 工艺参数为:搅拌温度 800 °C,搅拌转速450 r/min, 搅拌时间 20 min。

表4 硬度极差分析 Tab.4 Analysis of hardness difference

140	· · · · · · · · · · · · · · · · · · ·	iui uness uniei (ence
k_i 及 R	А	В	С
k_1	83.8	82.1	83.3
k_2	85	85.9	82.7
k_3	82.8	83.7	85.7
R	2.2	3.8	3

3 结论

随着搅拌温度、搅拌速度的适当增加和搅拌时 间的延长,SiC 颗粒在基体中的分布情况得到改善, 团聚减少。在搅拌温度 800 ℃、搅拌转速 450 r/min、

Fig.4 Factor level hardness influence trend chart

搅拌时间 20 min 的搅拌工艺下制备的复合材料,其 SiC 颗粒在基体中的分布最为均匀,团聚最少。 SiC-Al₃Ti/7075 复合材料中 SiC 和 Al₃Ti 颗粒分布 越均匀,复合材料的硬度越高,且搅拌因素对复合 材料硬度的影响顺序为搅拌速度>搅拌时间>搅 拌温度。

参考文献:

- 他得保,宋加伟,金培鹏,等. 轧制温度对 SiC_p/Al 复合材料组织 形貌的影响[J]. 铸造技术,2016,37(12): 2697-2699.
- [2] Jiang J F, Gang E. Compression Mechanical Behaviour of 7075 Aluminium Matrix Composite Reinforced with Nano-sized SiC Particles in Semisolid State [J]. Journal of Materials Science & Technology, 2016, 32(11): 1197-1203.
- [3] Pugalethi P, Jayaraman M, Natarajan A. Evaluation of Mechanical Properties of Aluminium Alloy 7075 Reinforced with SiC and Al₂O₃ Hybrid Metal Matrix Composites [J]. Applied Mechanics & Materials, 2015, 766-767: 246-251.
- [4] Ashwath P, Xavior M A. Processing methods and property evaluation of Al₂O₃ and SiC reinforced metal matrix composites based on aluminium 2xxx alloys[J]. Journal of Materials Research, 2016, 31 (9): 1201-1219.
- [5] 杨森,张瑞英,刘欢,等.铸造工艺对ZL102-20%SiC_p复合材料 耐蚀性能的影响[J].铸造技术,2018,39(10): 2167-2172,2175.
- [6] Moses J J, Dinaharan I, Sekhar S J. Characterization of Silicon Carbide Particulate Reinforced AA6061 Aluminum Alloy Composites Produced via Stir Casting [J]. Procedia Materials Science, 2014, 5: 106-112.

- [7] 岑晓倩. 热处理对 SiC 颗粒增强铝基复合材料组织及力学性能的影响[J]. 铸造技术,2017,38(5): 1051-1053.
- [8] Shen R, Wang H U, Guo B, et al. Microstructures and mechanical properties of nano-sized SiC particle reinforced pure Al based composites[J]. Materials Science & Engineering of Powder Metallurgy, 2016, 667: 332-339.
- [9] Sudarshan, Surappa M K. Synthesis of fly ash particle reinforced A356 Al composites and their characterization [J]. Materials Science & Engineering A, 2008, 480(1-2): 117-124.
- [10] 苏海,高文理,毛成,等. 搅拌铸造 SiC_p/2024 铝基复合材料的显 微组织与力学性能[J]. 中国有色金属学报,2010,20(2): 217-225.
- [11] 刘玫潭,蔡旭升,李国强. 高性能 SiC 增强 AI 基复合材料的显微 组织和热性能[J]. 中国有色金属学报,2013(4): 1040-1046.
- [12] Gui M C, Wang D B, Wu J J, et al. Microstructure and mechanical properties of cast (Al-Si)/SiC_p composites produced by liquid and semisolid double stirring process [J]. Metal Science Journal, 2013, 16(5): 556-563.
- [13] 吴星平,石锦罡,吴昊,等.真空搅拌铸造制备 SiC 颗粒增强
 ADC12 铝基复合材料及其力学性能表征[J].材料工程,2014(1):
 6-11.
- [14] Wang X J, Wang N Z, Wang L Y, et al. Processing, microstructure and mechanical properties of micro-SiC particles reinforced magnesium matrix composites fabricated by stir casting assisted by ultrasonic treatment processing[J]. Materials & Design, 2014, 57(5): 638-645.
- [15] Qu S G, Lou H S, Li X Q. Influence of particle size distribution on properties of SiC particles reinforced aluminum matrix composites with high SiC particle content [J]. Journal of Composite Materials, 2016, 50(8): 1049-1058.

《铸造涂料及应用》

《铸造涂料及应用》在内容上反映了铸造涂料的最新成果,在叙述上由浅入深,注重实用, 是从事铸造生产、管理、铸造原辅材料生产及销售相关人员的专业用书之一,也可作为高等院 校铸造专业或材料成形与控制专业铸造研究方向的本科生、研究生的教学研究用参考书。本书 共10章,第1章为绪论;第2章和第3章分别介绍了铸造涂料用耐火粉料、载液、悬浮剂、粘结剂 和助剂等原材料;第4章阐述了涂料的粘度及流变性能;第5章介绍了涂料的配制,第6~8章分别 重点介绍了砂型(芯)涂料、重力及非重力金属型铸造涂料和其他铸型(芯)涂料;第9章介绍了涂 料的缺陷及防止措施;第10章介绍了涂料的性能与检测。

特快专递邮购价: 69元。 邮购咨询: 李巧凤 电话/传真: 029-83222071