DOI:10.16410/j.issn1000-8365.2021.02.019

合金元素在铝合金汽车结构件铸件的研究现状

张海涛,何 昊,尹 纲,郭凯敏,白 杰

(东北大学材料电磁过程研究教育部重点实验室,辽宁沈阳110819)

摘 要:汽车结构件常用铸造铝合金主要分为 Al-Si 系和 Al-Mg 系,综述了添加合金元素提高合金性能的常用手段。对于 Al-Si 系铸造铝合金,Si 不仅可以提高铸造性能,还可以抑制针状 Al₃FeSi 相的形成;Mg 和 Cu 是主要的强化元素,可以形成 Mg₂Si 相、Al₂Cu 相和 Q-Al₅Cu₂Mg₈Si₆相;Mn 和 Mo 主要抑制针状富铁相生成;V、Ti 和 Zr 可以细化晶粒,从而提高力学性能。对于 Al-Mg 系铸造铝合金,当 Si 含量较高时,如 Magsimal[®] -plus(AlMg6Si2MnZr)合金,Mg₂Si 相为主要强化相,为了避免针状富铁相的生成,Fe 含量要求极低;当 Fe 含量较高时,如 Castaduct[®] -42(AlMg4Fe2)合金, 主要依靠 Mg 元素固溶在 Al 基体,并形成 Al-Fe 共晶相提高合金强度,Si 元素为杂质元素,可以减少针状 Al-Fe-Si 相的 生成。

关键词:合金元素;汽车结构件;Al-Si系铸造铝合金;Al-Mg系铸造铝合金

中图分类号: TG146.2 文献标识码: A

Research Status of Alloy Elements in Aluminum Alloy for Automobile Structure Parts Castings

ZHANG Haitao, HE Hao, YIN Gang, GUO Kaimin, BAI Jie

(Key Lab of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China)

Abstract: The cast aluminum alloys commonly used in automobile structural parts were mainly divided into Al-Si and Al-Mg systems. The common methods of adding alloying elements to improve the properties of alloys were reviewed. For Al-Si cast aluminum alloy, Si can not only improve the casting property, but also inhibit the formation of needle-like Al₃FeSi phase. Mg and Cu were the main strengthening elements, which can form Mg₂Si phase, Al₂Cu phase and Q-Al₃Cu₂Mg₈Si₆ phase. Mn and Mo mainly inhibited the formation of acicular iron-rich phase. V, Ti and Zr can refine the grain and improve the mechanical properties. For Al-Mg cast aluminum alloys, when Si content is high, such as MagSimal [®] -Plus (AlMg6Si2MnZr) alloy, Mg₂Si phase was the main strengthening phase, in order to avoid the formation of acicular iron-rich phase, Fe content was very low. When Fe content was high, such as Castaduct[®] -42 (AlMg4Fe2) alloy, it mainly relies on Mg element solid solution in Al matrix, and forms Al-Fe eutectic phase to improve the alloy strength. Si element was impurity element, which can reduce the formation of acicular Al-Fe-Si phase.

Key words: alloy elements; automobile structural parts; Al Si cast aluminum alloy; Al Mg cast aluminum alloy

在我国汽车工业高速发展的同时,汽车已成为 能源消耗和污染物排放的主要来源,用铸造铝合金 代替部分钢材可以减轻车辆重量,节省燃油和减少 CO₂的排放^[1]。汽车结构件是汽车的承载件和受力件, 要求强度相关的结构件抗拉强度≥210 MPa,伸长 率≥7%,韧性相关的结构件抗拉强度≥180 MPa, 伸长率≥10%^[2]。普通的铸造铝合金难以满足其力学 性能和服役性能的要求,通过向铝合金中添加合金 元素,可大大提高其使用性能。国内外学者对此进行 了大量研究,并取得了一定成果。目前 Al-Si 系和 Al-Mg 系铸造铝合金在汽车结构件中应用最多,本 文作者对几种合金元素在 Al-Si 系和 Al-Mg 系铸造 铝合金的研究现状进行了总结,可为汽车结构件用 铸造铝合金的发展提供参考。

文章编号:1000-8365(2021)02-0153-06

1 合金元素对 Al-Si 系铸造铝合金组 织和性能的影响

1.1 Si对 Al-Si系铸造铝合金组织和性能的影响

Si 是 Al-Si 系铸造铝合金的主要合金元素,一般保持在较高的含量,如 Silafont[®]-38 的 Si 含量在 8.5%~10.0%,可得到良好的铸造能力和充型能力。 严新炎,Francis Caron³¹把 Si 含量从 7%提升至 9%

收稿日期:2020-11-16

基金项目:国家自然科学基金资助项目(U1864209)

作者简介:张海涛(1978-),辽宁沈阳人,博士,副教授.研究方 向:铝合金成形工艺.电话:18640115776, E-mail:haitai zhang@epm.neu.edu.cn

时发现,铸件凝固温度范围缩小,凝固潜热增加,流 动性及补缩性得到改善,缩孔缩松倾向降低,韧性 和耐疲劳性得到改善。Si元素含量的增加,还能提 高合金的强度,Wang Yongjin等[®]把Si含量从0.58% 提高到 6.99%,发现铸态合金的屈服强度和极限抗 拉强度分别提高了 30 MPa 和 60 MPa 以上。

合金中 Si 的含量还与临界 Fe 含量直接相关。 临界 Fe 含量决定富铁相的形态,当 Fe 含量超过临 界值,就会在三元共晶凝固之前形成针状 β 相。图 1 是 Al-Si-Fe 三元相图的一部分,Fe_{crit}构造线突出了 临界 Fe 含量的存在,x-x'、y-y'、z-z'显示了当 Fe 含 量为 0.8%,Si 含量分别为 5%、7%、9%时初生 Al 的 凝固路径(使用 Scheil 假设),与 AB 线的交点是在 B 点形成三元共晶之前就已经开始形成针状 β 相 的位置。可以发现,随着 Si 含量的增加,在 Al-Si 共 晶之前形成 β 相的耐受 Fe 含量增加。当 Si 含量为 5%时,临界 Fe 含量为 0.35%,当 Si 含量为 7%时, 临界 Fe 含量为 0.5%,当 Si 含量为 9%时,临界 Fe 含量为 0.6%。此外,对于给定 Fe 含量的铝合金,随 着 Si 含量的增加,在 Al-Si 共晶之前形成 β 相的温 度降低^{IS}。

1.2 Mg、Cu 对 Al-Si 系铸造铝合金组织和性能的 影响

Mg 元素可以通过时效处理析出 Mg₂Si 相来提高合金的强度,随着 Mg 含量的增加,合金的强度和硬度随之增加,但伸长率随之下降⁶⁰。Mg 含量的变化也会影响富铁相的形态,Taylor,John A.等¹⁷研究了 Mg 含量的变化对 Al-7Si-Mg-0.12Fe 合金固溶处理过程中显微组织的变化,当 Mg 含量在 0.3%~0.4%较低的水平时,固溶过程中,块状或汉字状的 π 相会向针状的 β 相转变,当 Mg 含量在 0.6%~0.7%较高的水平时,这种转变不太明显。

Cu元素经常和 Mg 元素一起添加,共同提高合金强度。Zedan, Y.等¹⁸发现 Al₂Cu、Mg₂Si 等强化相的协同析出可使合金强度大幅提高。董亮¹⁹对 Al-7Si

中 Mg、Cu 强化相的时效析出序列进行了研究,发现 随着铜含量的增加,Al₂Cu 相和 Q-Al₅Cu₂Mg₈Si₆相会 随之增加,而 Mg₂Si 相体积分数则减少,当含铜量超 过一定量后,Mg₂Si 相体积分数则减少,当含铜量超 过一定量后,Mg₂Si 相将消失,只析出 Al₂Cu 相和 Q-Al₅Cu₂Mg₈Si₆相。 铸造过程中形成的 Q-Al₅Cu₂Mg₈Si₆相如果不能在固溶处理时溶解到铝 基体中,会明显的降低伸长率^[10]。如果要将铸态形成 的 Q-Al₅Cu₂Mg₈Si₆相如果不能在固溶处理时完全溶解,固 溶热处理温度必须要高于Q相的形成温度。 Q-Al₅Cu₂Mg₈Si₆相的形成温度随着铜含量的增加而 降低,随着镁含量的增加而升高^[11],严新炎等^[3]据此 规律通过模拟计算来确定 Al-9Si-xMg-yCu 合金体 系 Cu 和 Mg 的最佳配比,来优化固溶热处理工艺, 从而能够将铸造过程中形成的 Q-Al₅Cu₂Mg₈Si₆颗粒 经固溶处理全部溶解。

1.3 Mn、Mo对 Al-Si 系铸造铝合金组织和性能的 影响

Fe 能改善压铸合金的粘模现象,但也会不可避 免的生成针状 β-Al₃FeSi 相,这些针状相在的三维形 貌为板状,阻碍金属流动,易形成缩孔缩松^[5,12]。Mn 可以替换 β-Al₃FeSi 相中的 Fe 原子,将 β-Al₃FeSi 相 转变为对力学性能影响较小的 α-Al(Mn,Fe)Si 相^[13]。 如图 2 所示,随着 Mn/Fe 比的增加,α-Al(Mn,Fe)Si 相的形成温度随之增加,有足够的时间自由生长,其 形态发生汉字状、星状、多边形状的演变,其中汉 字状的 α-Al (Mn,Fe)Si 相对力学性能的提升最为 有利^[1418]。

Mo 是一种比 Mn 更为有效的 Fe 的中和剂。 Farkoosh A R 等^[19]发现在不添加 Mo 元素合金的显 微组织中,可以观察到 β -Al FeSi 相和 π 相两种富 铁相,添加 0.3% Mo 元素后,0.1% Fe 完全转变为了 α -Al(Mo,Fe)Si 相, β -Al₃FeSi 相和 π 相得到抑制。细 小的 α -Al(Mo,Fe)Si 相均匀弥散的分布在铝基体中, 可有效阻挡位错的运动,提高合金强度^[20]。Farkoosh AR等[21]还研究了Mo和Mn共同添加对Fe的中和 效果,在凝固过程中,成分过冷条件下形成枝晶,Mo 的溶质分配系数 K_M>1, Mo 在枝晶的核心区域参与 α-Al (FeMoMn)Si 的形核, Mn 的溶质分配系数 K_{M} <1, Mn 则向枝晶间区域偏离,参与 α -Al (FeMoMn)Si 的形成,Mo 和 Mn 共同添加可以减小 无分散区域,使得弥散体的分布更为均匀。Lanfeng J 等^[22]发现,在Fe含量较低时,添加0.37%的Mo就可 以把共晶 β-Fe 相完全改性,但在 Fe 含量较高时,在 共晶硅形成之前出现了一种新的 β-Fe 相,称为预共 晶 β-Fe 相, 只添加 Mo 元素时, Mo 优先与预共晶

β-Fe 相反应, 而共晶 β-Fe 相几乎保持不变,0.2% Mn 和 0.4%Mo 的共同添加可以使预共晶和共晶 β-Fe 相均得到完全改性,比单独添加具有更好的 效果。

Ti、V、Zr 对 Al-Si 系铸造铝合金组织和性能 的影响

Ti 是应用最广泛的铝合金晶粒细化剂,在铝合 金中生成 Al₃Ti 相,可作为异质形核点起细化晶粒 的作用^[23,24]。Colombo M 等^[25,26]研究发现 V、Zr 在铝 合金中可以生成 Al₃V 相、Al₃Zr 相,与 Al₃Ti 相具有 相似的晶体结构,和α-Al 固溶态晶格错配度低,也 能细化晶粒。此外,Ti、V、Zr 还可以生成 AlSi_x (TiVZr)相和 Al(FeVZr)Si 相,这些纳米级的弥散相 均匀分布在铝基体中,可以钉扎位错,提高铸造铝 合金在室温和高温下的强度^[27]。V、Zr 元素的添加还 会影响富铁相的形貌,Shaha,S.K.等^[28]发现 Al (FeVZr)Si 相的生成消耗了 Fe 元素,使针状 β-Al₃FeSi 相长度减少。Thomas H. Ludwig 等^[29]研究 了不同钒含量对铸态 A356 合金组织特征的影响, 发现 V 可以取代 β-Al_sFeSi 相中的 Fe 元素,并对 β-Al_sFeSi 相有一定球化作用。

1.5 Sr 对 Al-Si 系铸造铝合金组织和性能的影响

共晶硅的球化对 Al-Si 系铸造铝合金性能起着 至关重要的作用。如图 3,在添加 0.03%的 Sr 后,共 晶硅由针状转变为纤维状,其平均长度由 5.86 µm 减小到 2.43 µm,平均 Si 颗粒面积由 8.59 µm²下降 到 2.39 µm²,密度也大幅增加,虽然实际上共晶硅是 以珊瑚或海藻状结构连接在一起的,但因共晶硅纤 维看起来像抛光表面的单个小颗粒,所以这一过程 通常不恰当的被称为共晶硅的球化^[30]。Shamsuzzoha, M.等^[31]等用孪晶凹谷机制对共晶硅的球化原理 进行了解释,共晶硅生长在孪晶凹谷的界面前沿,Sr 变质后,铝液中的 Sr 原子因选择吸附在孪晶凹谷处 富集,阻碍了共晶硅沿原方向的生长,并被迫向 <100>、<110>、<112>等方向生长。铝硅共晶原本属 于"小平面-非小平面"共生,硅相为微观光滑界面,

图 3 铸态下 Al-10.8Si 的共晶硅的显微组织 Fig.3 Microstructure of as cast al-10.8Si eutectic silicon

生长速度较快,易形成针状硅,Sr变质后为"非小平 面-非小平面生长",向各个方向相互协调生长,即 变为纤维状^[24]。Sr的变质效果与冷却速率和合金元 素有关,冷却速率越高,使硅相完全变质的Sr含 量的阈值越小,变质效果越好。含量过多的Mg或 Cu元素会与合金中的Si和Sr发生反应,形成 Mg₂Sr(Si,Al)和Al-Cu-Sr金属化合物,降低或减 弱Sr作为改性剂的作用^[8]。此外,Sr会导致合金 在凝固过程中的液相填充能力降低,易产生缩 孔、缩松缺陷^[32]。

2 合金元素对 Al-Mg 系铸造铝合金 组织和性能的影响

2.1 Mg对 Al-Mg 系铸造铝合金组织和性能的影响

Al-Mg系铸造合金无需热处理,在铸态下就有 较高的强度,良好的韧性,以及优良的耐蚀性能,近 年来得到了广泛的关注。Mg元素是 Al-Mg系铸造铝 合金的主要元素,在 Magsimal[®] -plus(AlMg6Si2MnZr) 合金中,强化相为 Mg元素与 Si元素形成的 Mg₂Si 相和 Al₃Mg₂相。在 Castaduct[®] -42(AlMg4Fe2)中,Si 为杂质元素,主要依靠 Mg元素固溶在 α-Al 基体中 提高合金强度,与二元 Al-Fe 合金相比,含 Mg 的合 金在铸态下的强度可提高 60 MPa^[33]。因此,Mg元素 是 Al-Mg系铸造铝合金强度的决定元素。随着 Mg 含量的增加,Mg₂Si 相和 Al₃Mg₂ 相数目增多,其合 金强度增加,但伸长率随之降低,还会导致应力腐 蚀开裂的敏感性增加,为了得到优良的综合力学性 能,Mg 含量一般控制在 4%~6%^[34]。

2.2 Si对 Al-Mg 系铸造铝合金组织和性能的影响

在以 Magsimal[®] -plus (AlMg6Si2MnZr)为代表 的 Al-Mg-Si 铸造铝合金中,Si 的含量较高,其含量 在 2.1%~2.6%, 保证了凝固过程中良好的补缩性能 和铸造性能,但过剩硅会在组织内晶界处偏析,不均 匀的组织容易出现微电池反应,形成点蚀,从而影响 合金的抗腐蚀性能,所以 Mg 必须保持较高的剩 余量。孙浩然等^[55]和刘勇等^[56]研究了 Mg/Si 比对 Al-Mg-Si 合金的影响,当不含 Si 时,如图 4(a),大 部分 Mg 固溶在 α-Al 基体中, 少部分形成黑色颗粒 状的 Al₃Mg₂相,综合性能良好。Si 含量进一步增多 时,如图4(b),合金组织中出现了Al+Mg₂Si共晶, 合金的强度升高,但韧性下降。进一步增加 Si 含量, 如图 4(c)和(d),导致 Al-Mg-Si 共晶组织层片间距 增大,形貌变为带有尖端的凹多边形,易形成应力集 中。此外,在以 Castaduct[®] -42(AlMg4Fe2)为代表的 Al-Mg-Fe 铸造铝合金中,由于 Fe 含量较高,只有当 Si含量控制在 0.2%以下时,才能使 Al-Fe 共晶组织 变得细小,即使硅含量稍高,也会形成板状的 AlFeSi 相,导致伸长率降低[35]。

Fe、Mn 对 Al-Mg 系铸造铝合金组织和性能的 影响

Castaduct[®] -42(AlMg₄Fe₂)合金的相图如图 5,Fe 含量在 1.3%~1.7%,在凝固过程中,发生过共晶反 应,形成 Al₁₃Fe₄ 相和许多细小的 Al-Fe 共晶相,共晶 相所占比例很大,这种共晶相和 α -Al 枝晶为 Castaduct[®] -42 合金提供了良好的强度和铸造性能。但 当 Fe 含量过高时,会有针状 β-Fe 相生成,引起缩

(c)Mg/Si=2.5
 (d)Mg/Si=1.58
 图 4 不同 Mg/Si 的 Al-5Mg-xSi 的显微组织
 Fig.4 Microstructure of Al-5Mg-xSi with different Mg/Si ratios

Fig.5 Phase diagram of Castaduct[®] -42(AlMg₄Fe₂) alloy containing 4.5% Mg

孔、缩松缺陷,使伸长率大大降低。

针状 β-Fe 相在对 Fe 含量要求极低的 Magsimal[®] -plus (AlMg6Si2MnZr)合金中也会出现,造成 的危害更大。Ji, Shouxun^[37]等研究了 Fe 和 Mn 元素 对 Al-Mg-Si 压铸合金显微组织和力学性能的影响。 在没有 Mn 元素添加的情况下,套筒和模腔内主要 存在两种富铁相,为针状的 β-Al₁₃Fe₄ 相和星状的 Al₈Fe₂Si 相。加入 Mn 元素后,在 Mn/Fe 比小于 0.5 的情况下,可抑制针状 β-Al₁₃Fe₄ 相的形成,转化为 另一种致密 α -Al₂₄(FeMn)₆Si₂ 相,提高合金的屈服 强度和抗拉极限强度,但 Mn 含量保持不变,增加 Fe 的含量,会生成另一种成分为 Al₁₃(FeMn)₄Si₀₂₅ 的 针状相。

3 结语

(1)在 Al-Si 系铸造铝合金中, Si 元素含量在 7%~11%的亚共晶范围内,保证了良好的铸造性能, 提高临界 Fe 含量,抑制针状 β-Fe 相在铝硅共晶 之前的形成。Mg、Cu、Mn、Mo、Ti、V、Zr、Sr为微量 元素, Mg 元素和 Cu 元素可以通过析出 Mg₂Si、 Al₂Cu、和 Q-Al₅Cu₂Mg₈Si₆ 相提高合金强度,但 Q-Al₅Cu₂Mg₈Si₆相难以溶解,在凝固过程中形成的 粗大的 Q-Al₅Cu₂Mg₈Si₆相对伸长率有害,需选择合 适的 Mg/Cu 比和热处理参数以确保其完全溶解。 Mn 和 Mo 元素主要起抑制针状富铁相生成的作 用, 使合金中生成危害较小的 α-Al (Fe,Mn)Si 或 α-Al(Fe,Mo)Si相。V、Ti、Zr起细化晶粒的作用,也 可以生成 AlSi_x(TiVZr)和 Al(FeVZr)Si 弥散相,提高 合金室温和高温下的强度,同时消耗 Fe 含量,抑制 针状富铁相的生成。由于 Si 元素含量较高,共晶硅 的形貌决定着合金的力学性能,Sr是一种有效的共 晶硅球化剂,0.03%的 Sr 就可以使共晶硅由针状转 变为纤维状。

(2)在 Al-Mg 系铸造铝合金中,为了提高合金

强度,Mg的含量大大提高,大约在5%左右,而Si和Fe的含量则视情况而定,如莱茵菲尔德公司的Magsimal[®]-plus合金,Si含量在2%左右,强化相为Mg元素与Si元素形成的Mg₂Si相,为了防止形成针状Al-Fe-Si富铁相,Fe含量保持在极低水平。对于Castaduct[®]-42合金,Fe含量在1.3%~1.7%,主要依靠Mg元素固溶在Al基体和Al-Fe共晶相提高合金强度,由于Fe元素含量较高,Si元素则为杂质相。与Al-Si合金类似,添加微量Mn元素可以改善针状Al-Fe-Si富铁相的形貌。

参考文献:

- Das S, Graziano D, Upadhyayula V K K, et al. Vehicle lightweighting energy use impacts in U.S. light-duty vehicle fleet [J]. Sustainable Materials and Technologies, 2016(8): 5-13.
- [2] 卢宏远,卢敏,宋青,等.汽车结构件的压铸[J].特种铸造及有色 合金,2012,32(3):251-254.
- [3] 严新炎, Caron F. 高性能 AlSiMgCu 系铸造铝合金 A354 的研究
 [C]//2018 中国铸造活动周, 2018: 8.
- [4] Wang Y, Liao H, Wu Y, et al. Effect of Si content on microstructure and mechanical properties of Al-Si-Mg alloys [J]. Materials & Design, 2014, 53: 634-638.
- [5] Taylor J A. Iron-Containing Intermetallic Phases in Al-Si Based Casting Alloys[J]. Procedia Materials Science, 2012(1): 19-33.
 [6] Yildirim M, Özyürek D. The effects of Mg amount on the microstructure and mechanical properties of Al-Si-Mg alloys[J]. Materials & Design, 2013(51): 767-774.
- [7] Taylor J A, Stjohn D H, Barresi J, et al. Influence of Mg Content on the Microstructure and Solid Solution Chemistry of Al-7% Si-Mg Casting Alloys During Solution Treatment [J]. Materials Science Forum, 2000, 331-337: 277-282.
- [8] Zedan Y, Alkahtani S. Influence of the microstructure on the machinability of heat-treated Al-10.8% Si cast alloys: Role of copper-rich intermetallics[J]. Journal of Materials Processing Technology, 2013, 213(2): 167-179.
- [9] 董亮. Cr, Mg, Cu 合金化对于 Al-7%Si 铸造铝合金结构和性能 的影响[D]. 上海交通大学, 2018.
- [10] Ouellet P, Samuel F H. Effect of Mg on the ageing behaviour of Al-Si-Cu 319 type aluminium casting alloys[J]. Journal of Materials Science, 1999, 34(19): 4671-4697.
- [11] Stadler F, Antrekowitsch H, Fragner W, et al. Effect of main alloying elements on strength of Al-Si foundry alloys at elevated temperatures [J]. International Journal of Cast Metals Research, 2012, 25(4): 215-224.
- [12] Puncreobutr C, Phillion A B, Fife J L, et al. In situ quantification of the nucleation and growth of Fe-rich intermetallics during Al alloy solidification[J]. Acta Materialia, 2014(79): 292-303.
- [13] 汪黎. Fe 对 A356 铸造铝合金性能的影响研究[D]. 重庆:重庆大 学, 2015.
- [14] Zhang Z, Tezuka H, Kobayashi E, et al. Effects of the Mn/Fe Ratio and Cooling Rate on the Modification of Fe Intermetallic Com-

pounds in Cast A356 Based Alloy with Different Fe Contents[J]. Materials Transactions, 2013, 54(8): 1484-1490.

- [15] 刘涛,丁海,赵建华. Mn 对铸造 A356 合金中 Fe 相形貌的影响 和相图分析[J]. 特种铸造及有色合金, 2013, 33(9): 864-867.
- [16] Gao T, Wu Y, Li C, et al. Morphologies and growth mechanisms of α-Al (FeMn)Si in Al-Si-Fe-Mn alloy [J]. Materials Letters, 2013, 110: 191-194.
- [17] 宋东福,王顺成,郑开宏. Mn/Fe 摩尔比对 A356 铸造铝合金富 铁相形态的影响 [J]. 中国有色金属学报, 2015, 25 (7): 1832-1838.
- [18] Abedi K, Emamy M. The effect of Fe, Mn and Sr on the microstructure and tensile properties of A356-10% SiC composite[J]. Materials Science & Engineering A, 2010, 527 (16-17): P. 3733-3740.
- [19] Farkoosh A R, Chen X G, Pekguleryuz M. Dispersoid strengthening of a high temperature Al-Si-Cu-Mg alloy via Mo addition[J]. Materials Science & Engineering A, 2015, a620(jan.3): 181-189.
- [20] 李润霞,于洪江,袁晓光,等. Cr 和 Mo 对过共晶 Al-Si 合金组织 与性能的影响[J]. 铸造, 2009(8): 72-75.
- [21] Farkoosh A R, Grant Chen X, Pekguleryuz M. Interaction between molybdenum and manganese to form effective dispersoids in an Al-Si-Cu-Mg alloy and their influence on creep resistance[J]. Materials Science & Engineering A, 2015, 627: 127-138.
- [22] Jin L , Liu K , Chen X G . Evolution of Fe-Rich Intermetallics in Al-Si-Cu 319 Cast Alloy with Various Fe, Mo, and Mn Contents [J]. Metallurgical and Materials Transactions B, 2019, 50(4).
- [23] Rakhmonov J, Timelli G, Bonollo F. The Effect of Transition Elements on High-Temperature Mechanical Properties of Al-Si Foundry Alloys-A Review [J]. Advanced Engineering Materials, 2016, 18(7): 1096-1105.
- [24] 张传正. 大型轮毂用高强铸造铝合金制备技术研究[D]. 北京有 色金属研究总院, 2018.
- [25] Colombo M, Gariboldi E, Morri A. Influences of different Zr additions on the microstructure, room and high temperature mechanical properties of an Al-7Si-0.4Mg alloy modified with 0.25%Er[J]. Materials Science & Engineering A, 2018, 713(JAN.24): 151-160.
- [26] Rao A K P. Influence of Vanadium on the Microstructure of A319

(上接第140页)

通过检测对比,氢含量均满足产品要求,表明 了经过 VD 真空精炼的钢在下工序不去氢情况下, 氢含量仍能满足相关要求,同时通过加工后超声波 探伤,未发现疏松、白点及缩孔等质量问题,进一步 验证了工艺的可靠性。

4 结论

通过对机械泵组式的 VD 炉真空脱气工艺的研 究与不断优化, 经 VD 炉真空脱气和保护浇注生产 的钢,其气体含量[O] ≤28×10⁻⁴%、[N]≤36×10⁻⁴%、 [H] ≤1.4×10⁻⁴%,达到研究目标。

经过 VD 炉处理的钢锭生产锻件,取消某公司

Alloy [J]. Transactions of the Indian Institute of Metals, 2011, 64 (4-5): 447-451.

- [27] Liu G, Blake P, Ji S. Effect of Zr on the high cycle fatigue and mechanical properties of Al-Si-Cu-Mg alloys at elevated temperatures[J]. Journal of Alloys and Compounds, 2019, 809: 151795.
- [28] Shaha S K, Czerwinski F, Kasprzak W, et al. Ageing characteristics and high-temperature tensile properties of Al-Si-Cu-Mg alloys with micro-additions of Cr, Ti, V and Zr[J]. Materials Science and Engineering: A, 2016, 652: 353-364.
- [29] Ludwig T H, Schaffer P L, Arnberg L. Influence of Vanadium on the Microstructure of A356 Foundry Alloy [M]. John Wiley & Sons, Inc., 2013.
- [30] Mohamed A M A, Samuel A M, Samuel F H, et al. Influence of additives on the microstructure and tensile properties of near-eutectic Al-10.8% Si cast alloy [J]. Materials & Design, 2009, 30 (10): 3943-3957.
- [31] Shamsuzzoha M, Hogan L M. The crystal morphology of fibrous silicon in strontium-modified Al-Si eutectic [J]. Philosophical Magazine A, 1986, 54(4): 459-477.
- [32] 长海博文, 吴永福. Al-Si 系合金共晶 Si 变质处理的研究进展 [J]. 特种铸造及有色合金, 2016, 36(9): 924-930.
- [33] Casarotto F, Franke A J, Franke. High-pressure die-cast (HPDC) aluminium alloys for automotive applications[J]. Advanced Materials in Automotive Engineering, 2012: 109-149.
- [34] Hu, Zuqi, Wan, et al. Microstructure and mechanical properties of high strength die-casting;Al-wMg-Si-Mn alloy[J]. Materials & Design, 2013, 46(3):451-456.
- [35] 孙浩然,赵海东,代航,等. Si 元素对挤压铸造 Al-5Mg-xSi 合金 微观组织的影响 [J]. 特种铸造及有色合金,2019,39(3): 266-270.
- [36] 刘勇,陈超,张振富,等.不同 Mg、Si 质量比对压铸铝合金组织 与性能的影响 [J]. 特种铸造及有色合金, 2017, 37 (11): 1179-1182.
- [37] Ji S, Yang W, Gao F, et al. Effect of iron on the microstructure and mechanical property of Al-Mg-Si-Mn and Al-Mg-Si diecast alloys
 [J]. Materials Science and Engineering: A, 2013, 564: 130-139.

传统的使用自炼钢锭生产锻件的去氢工序,优化了 生产流程,大大缩短了生产周期,节约了燃气消耗。

参考文献:

- [1] 李玉华,刘茂文,常福华,等.高质量锻钢 VD 炉真空脱气工艺[J]. 炼钢,2009 (4):26-28.
- [2] 赵喜伟,陈文杰. VD 炉脱氢率的影响因素及工艺优化[J]. 宽厚 板,2019(2):27-30.
- [3] 邱绍岐,祝桂华. 电炉炼钢原理及工艺[M]. 北京:化学工业出版 业,2015.
- [4] 俞海明. 电炉钢液的炉外精炼技术[M]. 北京:冶金工业出版社,2010.